Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
Hình như b viết thiếu đề hay sao ý
Ng ta ko cho 3a^2+3b^2 bằng bao nhiêu ag
f(2020) = 20206 - 2021 × 20205 + 2021 × 20204 - 2021×20203 + 2021×20202 - 2021 × 2020 + 2021 = 1
Chúc bn học tốt !!!!!!!
Lời giải:
Ta thấy:
$|2a-3b+99|^{2021}\geq 0$ với mọi $a,b$ theo tính chất trị tuyệt đối
$(5a-6b)^{2020}\geq 0$ với mọi $a,b$
Do đó để tổng của chúng bằng $0$ thì:
$|2a-3b+99|^{2021}=(5a-6b)^{2020}=0$
$\Leftrightarrow 2a-3b+99=5a-6b=0$
$\Rightarrow a=198; b=165$
\(P\left(x\right)=ax^2+bx+c\)
Ta có: \(P\left(-1\right)=a-b+c\)
\(P\left(-2\right)=4a-2b+c\)
\(\Rightarrow P\left(-1\right)+P\left(-2\right)=5a-3b+2c=0\)
\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\) \(\Rightarrow P\left(-1\right).P\left(-2\right)\le0\)
Câu hỏi của Phạm Thị Minh Tú - Toán lớp 7 | Học trực tuyến:bạn tham khảo tại đây nhé !
Có \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow a=bk;c=dk\). \(a;b;c;d\ne0\) và \(a;b;c;d\in R\left(b^2=ac\right)\)
Ta có : \(\frac{5a+3b}{5c+3d}=\frac{5bk+3b}{5dk+3d}=\frac{b\left(5k+3\right)}{d\left(5k+3\right)}=\frac{b}{d}\left(1\right)\)
\(\frac{5a-3b}{5c-3d}=\frac{5bk-3b}{5dk-3d}=\frac{b\left(5k-3\right)}{d\left(5k-3\right)}=\frac{b}{d}\left(2\right)\) . Từ \(\left(1\right)\left(2\right)\)
Suy ra \(\frac{5a+3b}{5c+3d}=\frac{b}{d}=\frac{5a-3b}{5c-3d}\). Áp dụng tính chất cảu tỉ lệ thức
\(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\Leftrightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(đpcm\right)\)
mắt cận hử ? sao chép lại đề sai nhiều thế hả ?
\(\frac{5a+3b}{5x+3d}\)haizz \(\frac{5a+3b}{5a-3b}\)
uk tương tự đấy, đừng lm nữa.
Ta có: \(x^{1890};y^{2020}>0\) với mọi x; y khác 0
a) \(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\) dương với mọi x ; y khác 0
khi \(19t+\frac{5}{t}>0\)
<=> \(\frac{19t^2+5}{t}>0\)
<=> t > 0
vì 19t^2 + 5 > 0 với mọi t
b) \(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\) âm với mọi x ; y khác 0
khi \(19t+\frac{5}{t}< 0\)
<=> \(\frac{19t^2+5}{t}< 0\)
<=> t < 0
vì 19t^2 + 5 > 0 với mọi t
Đkxđ : t > 0
\(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\)
a) Ta có : \(x^{1890}\ge0\forall x\); \(y^{2020}\ge0\forall y\)
Để đơn thức dương => \(19t+\frac{5}{t}>0\)
=> t > 0
=> t thuộc N*
b) Ta có :\(x^{1890}\ge0\forall x\); \(y^{2020}\ge0\forall y\)
Để đơn thức âm => \(19t+\frac{5}{t}< 0\)
=> t < 0
=> t thuộc Z