
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: \(\left|2,68-2x\right|\ge0\)
\(\Rightarrow-\left|2,68-2x\right|\le0\)
\(\Rightarrow-\left|2,68-2x\right|-5,9\le0-5,9\)
\(\Rightarrow B\le-5,9\)
GTLN của B là -5,9
Dấu "=" xảy ra khi: \(2,68-2x=-5,9\)
\(\Rightarrow2x=2,68-\left(-5,9\right)\)
\(\Rightarrow2x=8,58\)
\(\Rightarrow x=4,29\)

a) M=2018+|1-2x|
nhận thấy:|1-2x|>=0 với mọi x=> M =2018+|1-2x|>=2018
dấu"=" xảy ra <=>|1-2x|=0<=>1-2x=0=>2x=1=>x=1/2
vậy giá trị nhỏ nhất của M=2018<=>x=1/2
b)N=2018-(1-2x)^2018
nhận thấy;(1-2x)^2018>=0 với mọi x=>-(1-2x)<=0 với mọi x=>N=2018-(1-2x)^2018<=2018
dấu bằng xảy ra <=>(1-2x)^2018=0=>1-2x=0=>2x=1=>x=1/2
vậy giá trị lớn nhất của N=2018<=>x=1/2
c)P=7+|x-1|+|2-x|
áp dụng |A|+|B|>=|A+B|. dấu "=" xảy ra<=>A.B=0 ta có
P=7+|x-1|+|2-x|>=7+|x-1+2-x|=7+1+8
dấu "=" xảy ra <=>(x-1). (2-x)=0
<=>x-1=0 hoặc 2-x=0<=>x=1 hoặc x=2
vậy giá trị nhỏ nhất của P=8<=> x=1 hoặc x=2

\(N=\left|2x-4\right|+\left|2x+5\right|=\left|4-2x\right|+\left|2x+5\right|\ge\left|4-2x+2x+5\right|=9\)
Dấu "=" xảy ra <=> \(\left(4-2x\right)\left(2x+5\right)\ge0\)
TH1: \(\hept{\begin{cases}4-2x\ge0\\2x+5\ge0\end{cases}}\) TH2: \(\hept{\begin{cases}4-2x\le0\\2x+5\le0\end{cases}}\)
hay \(\hept{\begin{cases}x\le2\\x\ge-\frac{5}{2}\end{cases}}\) hay \(\hept{\begin{cases}x\ge2\\x\le-\frac{5}{2}\end{cases}}\)loại
hay \(-\frac{5}{2}\le x\le2\)
Vậy min N=9 khi \(-\frac{5}{2}\le x\le2\)

\(B=1,5+\left|2-x\right|\)
Có: \(\left|2-x\right|\ge0\)
\(\Rightarrow1,5+\left|2-x\right|\ge1,5\)
Dấu = xảy ra khi: \(2-x=0\Rightarrow x=2\)
Vậy: \(Min_A=1,5\)tại \(x=2\)

a) Để A có GT nhỏ nhất
=> 6-x phải có giá trị là số nguyên âm lớn nhất
=> 6-x = -1
=> x = 7
Thay x = 7 vào A ta có:
A = 2/6-7 = -2
Vậy Min A = -2 <=> x =7
b) \(\frac{2x-5}{2x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)
=> Để B có giá trị nhỏ nhất thì 5/x phải có giá trị nhỏ nhất
=> x phải là số nguyên âm lớn nhất
=> x = -1
Thay x = -1 vào B ta có :
\(\frac{2\left(-1\right)-5}{-1}=\frac{-7}{-1}=7\)
Vậy Min B là 7 <=> x = -1
c) \(C=\frac{8-x}{x-3}=\frac{5+3-x}{x-3}=\frac{5-\left(x-3\right)}{x-3}=\frac{5}{x-3}-1\)
\(C_{min}\Leftrightarrow\left(\frac{5}{x-3}\right)_{min}\)
+)x>3 thì \(\frac{5}{x-3}>0\)
+)x<3 thì \(\frac{5}{x-3}<0\)
do đó chỉ xét x<3
\(\left(\frac{5}{x-3}\right)_{min}\Leftrightarrow\left(\frac{5}{3-x}\right)_{min}\Leftrightarrow\left(3-x\right)_{min}\)
<=>x=2 thỏa mãn
Khi đó \(C_{min}=\frac{5}{x-3}-1=\frac{5}{2-3}-1=-6\) tại x=2


- Vì \(\left|x-\frac{1}{2}\right|\ge0\)
=>\(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|\ge\frac{3}{8}\)
A đạt giá trị nhỏ nhất <=> \(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|=\frac{3}{8}\)
=>\(\left|x-\frac{1}{2}\right|=0\)
=>\(x-\frac{1}{2}=0\)
=>x=\(\frac{1}{2}\)
Vậy A đạt giá trị nhỏ nhất là \(\frac{3}{8}\) khi x=\(\frac{1}{2}\)
- Vì \(\left|2x+4\right|\ge0\)
=>\(B=\frac{6}{5}-\left|2x+4\right|\le\frac{6}{5}\)
B đạt giá trị lớn nhất <=> \(B=\frac{6}{5}-\left|2x+4\right|=\frac{6}{5}\)
<=>|2x+4|=0
<=>2x+4=0
<=>2x=-4
<=>x=-2
Vậy B đạt giá trị lớn nhất là \(\frac{6}{5}\) khi x=-2

Tham khảo nha nhóc
https://olm.vn/hoi-dap/detail/223396249611.html
Tương tự à
Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
\(\Rightarrow A=\left|x+2018\right|+\left|2019-x\right|\ge\left|\left(x+2018\right)+\left(2019-x\right)\right|=4037\)
\(\Rightarrow A_{min}=4037\)(Dấu "="\(\Leftrightarrow x\le2019\))
Vì |2,68 - 2x| >= 0 mọi x
=> |2,68 - 2x| -5,9 >= 5,9
Dấu "=" xảy ra <=> 2,68 - 2x = 0 <=> x = 1,34
Vậy GTNN = 5,9 <=> x = 1,34
+)Ta có:\(\left|2,68-2x\right|\ge0;\forall x\)
\(\Rightarrow\left|2,68-2x\right|-5,9\ge-5,9\forall x\)
+)GTNN của biểu thức bằng -5,9 khi
\(\left|2,68-2x\right|=0\)
\(2,68-2x=0\)
\(2x=2,68-0\)
\(2x=2,68\)
\(x=2,68:2\)
\(x=1,34\)
Vậy GTNN của biểu thức bằng -5,9 khi x=1,34
Chúc bạn học tốt