Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để d // d' khi
m + 2 = 3m + 1
=> - 2m = -1 => m= 1/2
Và 4n -3 khác n - 4 => n khác -1/3
d cát d' khi
m + 2 khác 3m +1 => m khác 1/2
d trùng d' khi
m + 2 = 3m+ 1 và 4n - 3 = n - 4
=> m = 1/2 và n = -1/3
Lời giải:
a) \(d_1\) đi qua gốc tọa độ nghĩa là \((d_1)\) đi qua điểm \((0;0)\)
\(\Rightarrow 0=2.0+m-3\Leftrightarrow m-3=0\Leftrightarrow m=3\)
b)
PT giao điểm của \(d_1\cap d_3\):
\((2x+m-3)-(4x-1)=0\)
\(\Leftrightarrow -2x+m-2=0\)
\(\Leftrightarrow x=\frac{m-2}{2}\)
Như vậy, giao điểm của \(d_1\cap d_3\) sẽ có dạng :
\(\left(\frac{m-2}{2};4.\frac{m-2}{2}-1\right)=\left(\frac{m-2}{2}; 2m-5\right)\)
Vì \(d_1,d_2,d_3\) đồng quy nên \(\left(\frac{m-2}{2};2m-5\right)\in d_2\)
\(\Rightarrow 2m-5=(m+1).\frac{m-2}{2}-3\)
\(\Leftrightarrow m^2-5m+2=0\) \(\Leftrightarrow m=\frac{5\pm \sqrt{17}}{2}\)
c)
Trước tiên ta cần tìm giao điểm của d3 và trục hoành
Vì giao điểm thuộc trục hoành nên tung độ bằng 0
\(\Rightarrow 0=4x-1\Leftrightarrow x=\frac{1}{4}\)
Như vậy giao điểm của d3 với trục hoành là: \((\frac{1}{4},0)\)
\((\frac{1}{4},0)\in d_1\Rightarrow 0=2.\frac{1}{4}+m-3\Leftrightarrow m=\frac{5}{2}\)
d) Trước tiên ta cần tìm giao điểm của d3 và trục tung
Vì giao điểm thuộc trục tung nên hoành độ bằng 0
suy ra \(y=4x-1=4.0-1=-1\)
Vậy giao của d3 và trục tung là \((0;-1)\)
Ta có \((0;-1)\in (d_2)\Rightarrow -1=(m+1).0-3\Leftrightarrow -1=-3\) (vô lý)
Vậy không tồn tại m thỏa mãn.
y = -x + 3 (d)
y = 2x - 6 (d')
a/ * Vẽ (d) y = -x + 3
- Cho x = 0 => y = 0 + 3 = 3 => Ta được (0;3) thuộc trục Oy
- Cho y = 0 => -x + 3 = 0 <=> x = 3 => Ta được (3;0) thuộc trục Ox
Đường thẳng đi qua (0;3) và (3;0) là đồ thị của hàm số y = -x + 3, là đường thẳng d
* Vẽ (d') y = 2x - 6
- Cho x = 0 => y = 2 . 0 - 6 => Ta được (0;-6) thuộc trục Oy
- Cho y = 0 => 2x - 6 = 0 <=> 2x = 6 <=> x = 3 => Ta được (3;0) thuộc trục Ox
Đường thẳng đi qua (0;-6) và (3;0) là đồ thị của hàm số y = 2x - 6, là đường thẳng d'
b/ Phương trình hoành độ giao điểm của (d) và (d'):
-x + 3 = 2x - 6 <=> 3x = 9 <=> x = 3
Thay x = 3 vào hàm số y = -x + 3
Ta được: y = - 3 + 3 = 0 => Điểm C(3;0) là giao điểm của (d) và (d')
c/ Xem lại đề bài, phải là (d) và (d') cắt Oy tại A và B. Tính chu vi và diện tích tam giác ABC
Cô si lên:
\(S\ge8\sqrt[8]{\frac{abcd\left(b+c+d\right)\left(a+c+d\right)\left(a+b+d\right)\left(a+b+c\right)}{abcd\left(b+c+d\right)\left(a+c+d\right)\left(a+b+d\right)\left(a+b+c\right)}}=8\)
๖²⁴ʱČøøℓ ɮøү 2к⁷༉ Liệu điểm rơi có xảy ra ???
Dùng \(\Sigma_{cyc}\) với \(\Pi_{cyc}\) cho nó lẹ nha,chớ mik nhác lắm:((
\(S=\Sigma_{cyc}\left(\frac{a}{b+c+d}+\frac{b+c+d}{a}\right)\)
\(=\Sigma_{cyc}\left(\frac{a}{b+c+d}+\frac{b+c+d}{9a}\right)+\Sigma_{cyc}\frac{8}{9}\cdot\frac{b+c+d}{a}\)
\(\ge8\sqrt[8]{\Pi_{cyc}\frac{a}{b+c+d}\cdot\Pi_{cyc}\frac{b+c+d}{9a}}+\frac{8}{9}\left(\frac{b}{a}+\frac{c}{a}+\frac{d}{a}+\frac{a}{b}+\frac{c}{b}+\frac{d}{b}+\frac{a}{c}+\frac{b}{c}+\frac{d}{c}+\frac{a}{d}+\frac{b}{d}+\frac{c}{d}\right)\)
\(\ge\frac{8}{3}+\frac{8}{9}\cdot12\left(use:\frac{x}{y}+\frac{y}{x}\ge2\right)\)
\(=\frac{40}{3}\)
Dấu "=" xảy ra tại a=b=c=d.
P/S:Viết tắt rồi mà vẫn dài:( Thử hỏi xem nếu ko viết thì sao ??
2,51878436E23
2.5187844e+23