K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021

TL ;

24 h = 86400 giây

HT

18 tháng 11 2021

=86400 giây

29 tháng 4 2018

\(\frac{x-1}{2x+1}< \frac{1}{2}\Leftrightarrow\frac{x-1}{2x+1}-\frac{1}{2}< 0\Leftrightarrow\frac{-3}{2x+1}< 0.\)

\(\Leftrightarrow2x+1>0\Leftrightarrow x>-\frac{1}{2}.\)

5 tháng 12 2016

ai nhanh nhất mk kết bn cho>^-^

Chứng minh theo thứ tự sau đây

chứng minh tứ giác ABMH nội tiếp đường tròn

chứng minh DC⋅AB=CA⋅CM

Nếu MC = HD và MD = 5cm thì độ dài đoạn MC bằng bao nhiêu?

chứng minh AD vuông góc với BM

22 tháng 2 2018

\(1.2.3.4+5+6=35\)

vd cho 1 cách

6 tháng 11 2015

tick cho mình đi rồi mình gửi bài cho còn không tick thì mình không bày đâu nhé

25 tháng 10 2021

5 năm rồi anh ấy vẫn chưa có câu trả lời

Ta có : \(-x^3+x^2+4=0\)

\(\Delta=1^2-4.4.\left(-1\right)=17>0\)

Vậy phương trình có 2 nghiệm phân biệt : 

\(x_1=\frac{-1-\sqrt{17}}{-1};x_2=\frac{-1+\sqrt{17}}{-1}\)

ĐK : tự ghi nha

\(A=\frac{x\sqrt{x}+1}{x-1}-\frac{x-1}{\sqrt{x}+1}\)

\(A=\frac{\sqrt{x}^3+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(A=\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(A=\frac{x-\sqrt{x}+1}{\sqrt{x}-1}-\sqrt{x}-1\)

\(A=\frac{x-\sqrt{x}+1}{\sqrt{x}-1}-\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)

\(A=\frac{x-\sqrt{x}+1}{\sqrt{x}-1}-\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)

\(A=\frac{x-\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(A=\frac{x-\sqrt{x}+1-x+2\sqrt{x}-1}{\sqrt{x}-1}\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}\)

30 tháng 5 2018

Làm vu vơ thoi nhé -_- 

Ta có : 

\(M\le2\)

\(\Leftrightarrow\)\(\frac{1}{\sqrt{x}-3}\le2\)

\(\Leftrightarrow\)\(\sqrt{x}-3\ge\frac{1}{2}\)

\(\Leftrightarrow\)\(\sqrt{x}\ge\frac{7}{2}\)
\(\Leftrightarrow\)\(\left(\sqrt{x}\right)^2\ge\left(\frac{7}{2}\right)^2\)

\(\Leftrightarrow\)\(x\ge\frac{49}{4}\)

Vậy \(x\ge\frac{49}{4}\)

Chúc bạn học tốt ~