Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mi tích tau tau tích mi xong tau trả lời nka việt nam nói là làm
Giải:
\(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\)
\(=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(=\dfrac{1}{1}-\dfrac{1}{13}\)
\(=\dfrac{12}{13}\)
Chúc em học tốt!
2/3+2/15+2/35+2/63+2/99+2/143
=2(1/1x3+1/3x5+1/5x7+1/7x9+1/9x11+1/11x13)
=2(1-1/3+1/3-1/5+1/5-....+1/13)
=2(1-1/13)
=2.12/13=24/13
\(\frac{2}{3}\cdot y-\frac{12}{3}:\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)=\frac{1}{3}\)\(\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}\right)=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\left(\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+\frac{9-7}{7\cdot9}+\frac{11-9}{9\cdot11}+\frac{13-11}{11\cdot13}\right)=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\left(1+\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+\frac{1}{9}-\frac{1}{9}+\frac{1}{11}-\frac{1}{11}+\frac{1}{13}\right)\)\(=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\left(\frac{1}{1}+\frac{1}{3}\right)=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\frac{4}{3}\)\(=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4\cdot\frac{3}{4}=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-3=\frac{1}{3}\)
\(\frac{2}{3}\cdot y=\frac{1}{3}+3\)
\(\frac{2}{3}\cdot y=\frac{10}{3}\)
\(y=\frac{10}{3}:\frac{2}{3}\)
y=5
2/15 + 2/35 + 2/63 + 2/99 + 2/143 + 2/195
\(=2\times\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}+\dfrac{1}{13.15}\right)\)
= \(2\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}\right)\)
\(=2\times\left(\dfrac{1}{3}-\dfrac{1}{15}\right)\)
\(=2\times\dfrac{4}{15}\)
\(=\dfrac{8}{15}\)
tính bằng cách nhanh nhất
2/15 + 2/35 + 2/63 + 2/99 + 32/143 + 2/195
Cj' hăm thoát đc đou
\(C=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\)
\(C=\frac{2}{3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)
\(C=\frac{2}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(C=\frac{2}{3}+\frac{1}{3}-\frac{1}{13}\)
\(C=1-\frac{1}{13}\)
\(C=\frac{12}{13}\)
\(C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)
\(C=\frac{1}{1}-\frac{1}{3}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(C=\frac{1}{1}-\frac{1}{13}\)
\(C=\frac{12}{13}\)
A= 2( 1/15 + 1/35 + 1/63+ 1/99+1/143)
A= 2(1/3x5 +1/5x7 + 1/7x9 + 1/9x11 + 1/11x13)
A=2(1/3-1/5+1/5-1/+1/7-1/9+1/9-1/11+1/11-1/13)
A=2(1/3-1/13)
A=2x10/39
A=20/39
A = 2/15 + 2/35 + 2/63 + 2/99 + 2/143
A = 2/3x5 + 2/5x7 + 2/7x9 + 2/9x11 + 2/11x13
A = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13
A = 1/3 - 1/13
A = 12/13
Ta so sánh các số hạng
=> Dãy số từ lớn -> bé
=> \(\frac{1}{3}< \frac{1}{2}\)
Nên tất cả các số phía sau đều bé hơn \(\frac{1}{2}\)
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{143}\)
\(=\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{11\times13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
Đặt \(A=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{143}\)
\(\Rightarrow A=\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{11.13}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)
\(\Rightarrow A=1-\frac{1}{13}=\frac{13}{13}-\frac{1}{13}=\frac{2}{13}\)