K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {Ans}`

`\downarrow`

`2/3 + 1/4 - 1/2`

`= 8/12 + 3/12 - 6/12`

`= (8+3-6)/12`

`= 5/12`

5 tháng 9 2020

1) \(\left(\frac{3}{7}+\frac{1}{2}\right)^2=\left(\frac{13}{14}\right)^2=\frac{169}{196}\)

2) \(\left(\frac{3}{4}-\frac{5}{6}\right)^2=\left(-\frac{1}{12}\right)=\frac{1}{144}\)

3) \(\left(1+\frac{2}{3}-\frac{1}{4}\right)\cdot\left(\frac{4}{5}-\frac{3}{4}\right)^2\)

\(=\frac{17}{12}\cdot\left(\frac{1}{20}\right)^2=\frac{17}{4800}\)

4) \(2\div\left(\frac{1}{2}-\frac{2}{3}\right)^3=2\div\left(-\frac{1}{6}\right)^3\)

\(=2\div\left(-\frac{1}{216}\right)=-432\)

23 tháng 7 2015

a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(A=1-\frac{1}{2^{50}}<1\)

Vậy \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}<1\)

b)\(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)

\(3B-B=2B=1-\frac{1}{3^{100}}\)

\(B=\frac{1-\frac{1}{3^{100}}}{2}\)

\(1-\frac{1}{3^{100}}<1\)nên\(\frac{1-\frac{1}{3^{100}}}{2}<\frac{1}{2}\)

Vậy \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}<\frac{1}{2}\)

c) \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\)

\(4C=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}\)

\(4C-C=3C=1-\frac{1}{4^{1000}}\)

\(C=\frac{1-\frac{1}{4^{1000}}}{3}\)

\(1-\frac{1}{4^{1000}}<1\)nên\(\frac{1-\frac{1}{4^{1000}}}{3}<\frac{1}{3}\) 

Vậy \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}<\frac{1}{3}\)

 

22 tháng 12 2016

Bạn Detective_conan giải đúng đấy!

4 tháng 4 2020

thang nay rot vl

4 tháng 4 2020

1; = ( -4/10 + 3/10 ) : ( -2/5 + 2/3 ) = -1/10 : ( -6/15 + 10/15 ) = -1/10 : 4/15 = -1/10 . 15/4 = -15/40 = -3/8

2; = 25/2 . -5/7 + 39/4 + -3/2 . 5/7 = -125/14 + 39/4 + -15/14 = ( -125/14 + -15/14 ) + 39/4 = -10 + 39/4 = -40/4 + 39/4 = -1/4

3; = 5/52 + 35/52 + 40/52 = 40/52 + 40/52 = 80/52 = 20/13

4; = ( -39/52 + 20/52 ) . 7/2 - ( 117/52 + 32/52 ) . 7/2 = -19/52 . 7/2 - 149/52 . 7/2 = ( -19/52 + -149/52 ) . 7/2 = -168/52 .7/2 = -147/13

5; = ( 36/12 + -9/12 + 8/12 ) - ( -12/6 + -8/6 + -9/6 ) - ( 6/6 - 14/6 - 27/6 ) = 35/12 + 10/12 + 70/12 = 115/12

6; = -1/3 + -8/35 +-2/9 + -1/135 +4/5 +-4/9 +3/7 = (-1/3 + -2/9 + -4/9 ) + ( -8/35 + 4/5 + 3/7 ) + -1/135 = ( -1/3 + -2/3 ) + ( -8/35 + 28/35 + 15/35 ) + -1/135 = -1 + 1 + -1/135 = -1/135

29 tháng 11 2018

GIÚP MIK VỚI MỌI NGƯỜI ƠI

AI TRẢ LỜI TRƯỚC LINH ĐÁNH DẤU CHO NHA

27 tháng 9 2024

         Bài 1:

\(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)

\(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1

-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)

\(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)

  \(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))

 \(x\) = \(\dfrac{3}{14}\)

Vậy \(x=\dfrac{3}{14}\)

 

 

27 tháng 9 2024

Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1

         2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)

         - 5\(x\)    = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\) 

        - 5\(x\)    = \(\dfrac{7}{6}\)

           \(x\)    = \(\dfrac{7}{6}\) : (- 5) 

          \(x\)    = - \(\dfrac{7}{30}\)

Vậy \(x=-\dfrac{7}{30}\)

 

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

Trừ theo vế:

\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)

\(4B=5^{2010}-1\)

\(B=\frac{5^{2010}-1}{4}\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)

\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)

\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)

Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)

\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)

Trừ theo vế:

\(3X-X=3^n-3^0=3^n-1\)

\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)

Nguyễn Trà My

Phần a)

\(3\times\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)

\(32-3x+13=76-x\)

\(116-3x=76-x\)

\(116-76=3x-x\)

\(46=2x\)

\(x=46\div2\)

\(x=13\)

22 tháng 9 2017

a)  \(3.\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)

\(3.\left(\frac{1}{2}-x\right)+x=\frac{7}{6}-\frac{1}{3}\)

\(\Rightarrow\frac{3}{2}-3x+x=\frac{5}{6}\)

\(-3x+x=\frac{5}{6}-\frac{3}{2}\)

\(2x=-\frac{2}{3}\)

\(x=-\frac{2}{3}:2\)

\(x=-\frac{1}{3}\)

24 tháng 6 2015

\(...\)(viết lại đề)

\(=\frac{1}{2}+\frac{4}{3}+\frac{9}{4}+\frac{15}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)

=\(\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{4}{3}-\frac{1}{3}\right)+\left(\frac{9}{4}+\frac{15}{4}\right)-\left(3+2+1\right)\)

\(=0+1+6-6\)\(=1\)

 

24 tháng 6 2015

khó quá loằng ngà loằng ngoằng