K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2024

Em cần làm gì với biểu thức này?

7 tháng 12 2015

ta có

\(A=1.2^2+2.3^2+3.4^2+...+99.100^2=1.2.\left(3-1\right)+2.3.\left(4-2\right)+...+99.100.\left(101-99\right)\)

\(A=\left(1.2.3+2.3.4+...+99.100.101\right)-\left(2.3+3.4+...+99.100\right)\)Đối với bt trước ông nhân với 4 =>đc tổng 98.99.100.101 

Đối với bt sau ông nhân với 3 được tổng là 99.100.101

=>A=98.99.100.101 - 99.100.101=97.99.100.101=96990300

nhớ tick nha lắc lư

 

7 tháng 12 2015

sao lớp 9 ko vậy mà tick cho em đi.

5 tháng 6 2018

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2009\cdot2010}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=\frac{1}{1}-\frac{1}{2010}\)

\(=\frac{2010}{2010}-\frac{1}{2010}\)

\(=\frac{2009}{2010}\)

26 tháng 9 2015

Hình như đề là thế này :

\(\frac{1}{\sqrt{1}+\sqrt{2}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=9\)

\(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=10-1=9\)

ta có \(\frac{1}{\sqrt{1.2}}khác\frac{1}{\sqrt{1}+\sqrt{2}}\)

................................

 \(\frac{1}{\sqrt{99.100}}khấc\frac{1}{\sqrt{99}+\sqrt{100}}\)

9 tháng 7 2018

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2005}-\frac{1}{2006}\)

=> \(A=\frac{1}{1}-\frac{1}{2006}=\frac{2005}{2006}\)

9 tháng 7 2018

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=1-\frac{1}{2006}\)

\(A=\frac{2005}{2006}\)