Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 2 + 22 + 23 + ... + 22019
2A = 2(1 + 2 + 22 + ... + 22019)
2A = 2 + 22 + 23 + ... + 22020
=> 2A - A = (2 + 22 + 23 + ... + 22020) - (1 + 2 + 22 + .. +22019)
=> A = 22020 - 1
B - A = 22020 - (22020 - 1) = 1
\(A=1+2+2^2+2^3+...+2^{2019}\)
\(2A=2\left(1+2+2^2+2^3+...+2^{2019}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{2020}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2020}\right)-\left(1+2+2^2+2^3+...+2^{2019}\right)\)
\(A=2^{2020}-1\)
=> B - A = \(2^{2020}-\left(2^{2020}-1\right)=\text{ấn máy tính đel ra :))))}\)
mk sai đề một tí
A=2019 mũ 2020 + 1
trên 2019 mũ 2020 - 3
B=2019 mũ 2020 -1
trên 2019mũ 2020 - 5
so sánh A và B
b. 1404 : [118 - (4x + 6)] = 27
118 - (4x + 6) = 52
4x + 6 = 66
4x = 60
x = 15
d) \(5x^2-3x=0\)
\(\Leftrightarrow x\left(5x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{5}\end{cases}}\)
e) \(3\left(x-1\right)+4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[3-4.\left(x-1\right)\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\3-4\left(x-1\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\4\left(x-1\right)=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x-1=\frac{3}{4}\Rightarrow x=\frac{7}{4}\end{cases}}\)
f) \(2\left(x-2\right)^2=\left(x-2\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x-2=\frac{1}{2}\Rightarrow x=\frac{5}{2}\end{cases}}\)
g) \(\left(x-2020\right)^4=\left(x-2020\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2020\right)^2=0\\\left(x-2020\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=2019,x=2021\end{cases}}\)
\(x^{2020}=x\Leftrightarrow x^{2020}-x=0\Leftrightarrow x\left(x^{2019}-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(1+2+2^2+2^3+....+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{2016}+2^{2017}+2^{2018}\right)+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+.....+2^{2016}\left(1+2+2^2\right)+2^{2019}+2^{2020}\)
\(A=7+2^3.7+2^6.7+2^9.7+....+2^{2016}.7+2^{2019}+2^{2020}\)
\(\text{Ta có:}2^{2019}+2^{2020}=8^{673}+8^{673}.2\equiv1+1.2\left(\text{mod 7}\right)\equiv3\left(\text{mod 7}\right)\Rightarrow A\text{ chia 7 dư 3}\)
Đặt \(A=2+2^2+2^3+...+2^{2019}+2^{2020}\)
\(2A=2^2+2^3+2^4+...+2^{2020}+2^{2021}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{2020}+2^{2021}\right)\)\(-\left(2+2^2+2^3+...+2^{2019}+2^{2020}\right)\)
\(A=2^{2021}-2\)
Đặt A = 2 + 22 + 23 + ... + 22020
A = 2 + 22 + 23 + ... + 22020
⇒⇒ 2A = 22 + 23 + 24 + ... + 22021
⇒⇒ 2A - A = (22 + 23 + 24 + ... + 22021) - (2 + 22 + 23 + ... + 22020)
⇒⇒ A = 22021 - 2