\(2^{2017}-\left(2^{2016}+2^{2015}+2^{2014}+...+12+1\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

\(A=2^{2017}-\left(2^{2016}+...+2^1+1\right)\\ \)

Đặt \(B=1+2+...+2^{2016}\)

\(\Rightarrow2.B=2+2^2+...+2^{2017}\\ \Rightarrow2.B-B=\left(2+2^2+...+2^{2017}\right)-\left(1+2+...+2^{2016}\right)\\ \Rightarrow B=2^{2017}-1\\ \Rightarrow A=2^{2017}-B=2^{2017}-2^{2017}+1=1\)

22 tháng 12 2016

sao phần b k có qui luật j vậy đúng ra nó phải là 3/2014+2/2015+2/2016 chứ ( 3 phân số cuối)

30 tháng 7 2019

\(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.....+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}=\left(\frac{2015+2}{2}\right)+\left(\frac{2014+3}{3}\right)+.....\left(\frac{1+2016}{2016}\right)+\frac{2017}{2017}=\frac{2017}{2}+\frac{2017}{3}+....+\frac{2017}{2017}=2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2017}\right)\Rightarrow\frac{B}{A}=2017\)

14 tháng 12 2017

\(B=\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)

\(B=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+....+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)

\(B=1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{3}{2014}+1\right)+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)\)

\(B=\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+....+\dfrac{2017}{2014}+\dfrac{2017}{2015}+\dfrac{2017}{2016}\)

\(B=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)

\(\dfrac{B}{A}=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}=2017\)

14 tháng 12 2017

\(\dfrac{B}{A}=\dfrac{\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=\dfrac{1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=\dfrac{\dfrac{2017}{2017}+\left(\dfrac{2015}{2}+\dfrac{2}{2}\right)+\left(\dfrac{2014}{3}+\dfrac{3}{3}\right)+...+\left(\dfrac{1}{2016}+\dfrac{2016}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=2017\)

Vậy \(\dfrac{B}{A}=2017\)

30 tháng 8 2016

\(\frac{10^{2016}+2^3}{9}=\frac{10^{2016}-1}{9}+\frac{2^3+1}{9}=\left(1+10+10^2+...+10^{2015}\right)+1\in N.\)

30 tháng 8 2016

\(10^{2016}\)= 1000...00(mình ko cần biết cso bao nhiêu cx 0, nó là bài đánh  lừa nhá bn)

\(2^3\)= 8

\(10^{2016}\) + 8= 10000...08

có 1+0+0+...+0+8=9. vậy số này chia hết cho 9

mà như bạn thấy số này là số dương nên số đó là số tự nhiên nhá

19 tháng 3 2019

Đề thi đó

26 tháng 10 2016

a)Vì |x2015|= 1/2 nên x-2015=-1/2 hoặc x-2015=1/2

Nếu x-2015=-1/2 thì

x=2015+(-1)/2

x=4029/2

Nếu x-2015=1/2 thì

x=2015+1/2

x=4031/2

Vậy x=4029/2

hoặc x=4031/2

 

26 tháng 10 2016

b)

Nếu x>2016 thì |x2015|=x-2015 ,|x2016|=x-2016

Khi đó: |x2015|+|x2016|=2017

=>x-2015+x-2016=2017

=>2x-4031=2017

=>2x=6048=>x=3024(thỏa mãn x>2016)

Nếu 2015<x<2016 thì |x2015|=x-2015,

|x2016|=2016-x. khi đó

|x2015|+|x2016|=2017

=>x-2015+2016-x=2017

=>1=2017(vô lý loại)

Nếu x>2015 thì |x2015|=2015-x,|x2016|=2016-x

Khi đó:

|x2015|+|x2016|=2017

=>2015-x+2016-x=2017

=>4031-2x=2017

=>2x=2014=>x=1007(thỏa mãn x<2015)

Vậy x=1007 hoặc x=3024

19 tháng 11 2016

3 + |x - 3|2016 = 22017 - 22016 - 22016 - ... - 22

3 + |x - 3|2016 = 22017 - (22016 + 22015 + ... + 22)

Đặt A = 22016 + 22015 + ... + 22

2A = 22017 + 22016 + ... + 23

2A - A = 22017 - 22

A = 22017 - 4

3 + |x - 3|2016 = 22017 - (22017 - 4) = 22017 - 22017 + 4 = 4

=> |x - 3|2016 = 4 - 3 = 1

=> |x - 3| = 1

\(\Rightarrow\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

18 tháng 12 2018

\(\text{đặt}k=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)

\(K=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(K=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1008}\right)\)

\(K=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+....+\frac{1}{2017}\Rightarrow A=1\)