Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lũy thừa | \({\left( {\frac{{ - 3}}{2}} \right)^4}\) | \({\left( {0,1} \right)^3}\) | \({\left( {1,5} \right)^2}\) | \({\left( {\frac{1}{3}} \right)^4}\) | \({2^0}\) |
Cơ số | \(\frac{{ - 3}}{2}\) | \(0,1\) | 1,5 | \(\frac{1}{3}\) | 2 |
Số mũ | 4 | \(3\) | 2 | 4 | 0 |
Giá trị lũy thừa | \(\frac{{81}}{{16}}\) | \(0,001\) | \(2,25\) | \(\frac{1}{{81}}\) | 1 |
\(\left(\frac{3}{4}\right)^3:\left(\frac{3}{4}\right)^2:\left(\frac{2}{3}\right)^3=\frac{3}{4}.\frac{27}{8}=\frac{81}{32}\)
a: \(\Leftrightarrow-x+2=-0.02\)
=>2-x=-0,02
=>x=2,02
b: \(\Leftrightarrow-0.75x+9=0.4\)
=>-0,75x=-8,6
=>x=172/15
c: \(\Leftrightarrow0.27x-5.4=-0.375\)
=>0,27x=5,025
=>x=335/18
\(\left(-\dfrac{2}{3}\right).0,75+1\dfrac{2}{3}:\left(-\dfrac{4}{9}\right)+\left(-\dfrac{1}{2}\right)^2\)
\(=\left(-\dfrac{2}{3}\right).\dfrac{3}{4}+\dfrac{5}{3}:\left(-\dfrac{4}{9}\right)+\dfrac{1}{4}\)
\(=\left(-\dfrac{1}{2}\right)+\left(-\dfrac{15}{4}\right)+\dfrac{1}{4}\)
\(=-\dfrac{16}{4}=-4\)
a) \(\frac{7^3.5^8}{49.25^4}=\frac{7^3.5^8}{7^2.\left(5^2\right)^4}=7.\frac{5^8}{5^8}=7\)
b) \(\frac{3^9.25.5^3}{15.625.3^8}=\frac{3.3^8.5^2.5^3}{3.5.5^4.3^8}=\frac{5^5}{5^5}=1\)
c) Đề hơi sai roi bạn oi
d) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{3}{5}\right)^2=\left(\frac{-1}{10}\right)^2+\left(\frac{11}{10}\right)^2=\frac{1}{100}+\frac{121}{100}=\frac{61}{50}\)
\(\left(\dfrac{1}{2}\right)^{50}=\left[\left(\dfrac{1}{2}\right)^5\right]^{10}=\left(\dfrac{1}{32}\right)^{10}\)
1/12>1/32
=>(1/12)^10>(1/32)^10
=>(1/12)^10>(1/2)^50
Có: \(\left(\dfrac{1}{12}\right)^{10}=\dfrac{1}{12^{10}}\)
\(\left(\dfrac{1}{2}\right)^{50}=\dfrac{1}{2^{50}}=\dfrac{1}{\left(2^5\right)^{10}}=\dfrac{1}{32^{10}}\)
Do \(12< 32\Rightarrow12^{10}< 32^{10}\)
\(\Rightarrow\dfrac{1}{12^{10}}>\dfrac{1}{32^{10}}\) hay \(\left(\dfrac{1}{12}\right)^{10}>\left(\dfrac{1}{2}\right)^{50}\)
\(\left(\dfrac{9}{4}\right)^{x-6}=\left(\dfrac{27}{8}\right)^{x-2}\)
\(\Leftrightarrow\left[\left(\dfrac{3}{2}\right)^2\right]^{x-6}=\left[\left(\dfrac{3}{2}\right)^3\right]^{x-2}\)
\(\Leftrightarrow\left(\dfrac{3}{2}\right)^{2x-12}=\left(\dfrac{3}{2}\right)^{3x-6}\)
\(\Leftrightarrow2x-12=3x-6\)
\(\Leftrightarrow-12+6=3x-2x\)
\(\Leftrightarrow x=-6\)
Vậy ............
P/S : Lần sau gỗ bằng công thức toán nhs bn :)
\(\left(\dfrac{2}{5}-3x\right)^2-\dfrac{1}{5}=\dfrac{4}{25}\)
\(\Rightarrow\left(\dfrac{2}{5}-3x\right)^2=\dfrac{4}{25}+\dfrac{1}{5}=\dfrac{9}{25}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(\left(22:\frac{0,1}{1,5}.2+0,25.\frac{4}{5,6}:2,8\right)-\left(\frac{1}{2}\right)^2\)
= \(\left(22:\frac{1}{15}.2+\frac{1}{4}.\frac{5}{7}:\frac{14}{5}\right)-\frac{1}{4}\)
= \(\left(22.15.2+\frac{1}{4}.\frac{5}{7}.\frac{14}{5}\right)-\frac{1}{4}\)
=\(\left(660+\frac{1.5.14}{4.7.5}\right)-\frac{1}{4}\)
= \(\left(660+\frac{1}{2}\right)-\frac{1}{4}\)
= \(\left(\frac{1320+1}{2}\right)-\frac{1}{4}\)
=\(\frac{1321}{2}-\frac{1}{4}\)
=\(\frac{2642-1}{4}\)
=\(\frac{2641}{4}\)
= 660,25