Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{3+\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)\)
\(=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}.\left(\sqrt{10}+\sqrt{2}\right)\)
\(=\left(9-5\right).\sqrt{3-\sqrt{5}}.\sqrt{2}\left(\sqrt{5}+1\right)\)
\(=4.\sqrt{6-2\sqrt{5}}.\left(\sqrt{5}+1\right)\)
\(=4.\sqrt{5-2\sqrt{5}+1}.\left(\sqrt{5}+1\right)\)
\(=4.\sqrt{\left(\sqrt{5}-1\right)^2}.\left(\sqrt{5}+1\right)\)
\(=4.\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=4.\left(5-1\right)=16\)
b) \(2\sqrt{4+\sqrt{6-2\sqrt{5}}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{4+\sqrt{5-2\sqrt{5}+1}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{3+\sqrt{5}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{1}\right)\)
\(=2\sqrt{6+2\sqrt{5}}.\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5+2\sqrt{5}+1}.\left(\sqrt{5}-1\right)\)
\(=2\sqrt{\left(\sqrt{5}+1\right)^2}.\left(\sqrt{5}-1\right)=2.\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)\)
\(=2.\left(5-1\right)=2.4=8\)
\(1,\sqrt{\left(2+\sqrt{7}\right)^2-\sqrt{\left(2-\sqrt{7}\right)^2}}\) ( áp dụng hđt thứ 3 \(a^2-b^2=\left(a-b\right)\left(a+b\right)\))
\(=\sqrt{\left(2+\sqrt{7}+2-\sqrt{7}\right)\left(2+\sqrt{7}-2+\sqrt{7}\right)}\)
\(=\sqrt{4\cdot\sqrt{7}}\)
\(2,\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}-\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)
\(\Leftrightarrow\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}=\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)
\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2=\left(5\sqrt{2}+3\sqrt{5}\right)^2\)
\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2-\left(5\sqrt{2}+3\sqrt{5}\right)^2\)
\(=\left(3\sqrt{5}-5\sqrt{2}+5\sqrt{2}+3\sqrt{5}\right)\left(3\sqrt{5}-5\sqrt{2}-5\sqrt{2}-3\sqrt{5}\right)\)
\(=6\sqrt{5}\cdot\left(-10\sqrt{2}\right)\)
\(3,\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\)
\(\Leftrightarrow\sqrt{10+2\sqrt{21}}=\sqrt{10-2\sqrt{21}}\)
\(\Leftrightarrow10+2\sqrt{21}=10-2\sqrt{21}\)
\(\Leftrightarrow4\sqrt{21}\)
cuối lười tính nên thôi nhá :>
a: \(D=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(E=\sqrt{6-2\sqrt{5}}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)
\(=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
\(=18+6\sqrt{5}-6\sqrt{5}-10=8\)
\(=\frac{21}{2}\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2-3\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)^2-15\sqrt{15}\)
\(=\frac{21}{2}\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-3\left(\sqrt{3}-1+\sqrt{5}+1\right)^2-15\sqrt{15}\)
\(=\frac{15}{2}\left(\sqrt{3}+\sqrt{5}\right)^2-15\sqrt{15}\)
\(=\frac{15}{2}\left(8+2\sqrt{15}\right)-15\sqrt{15}\)
\(=60+15\sqrt{15}-15\sqrt{15}=60\)
Biểu thức trên = \(\frac{21.\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2}{2}\)\(-\frac{6.\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)^2}{2}\)\(-15\sqrt{15}\)
\(=\frac{21.\left(\sqrt{3+2\sqrt{3}+1}+\sqrt{5-2\sqrt{5}+1}\right)^2}{2}-\frac{6.\left(\sqrt{3-2\sqrt{3}+1}+\sqrt{5+2\sqrt{5}+1}\right)^2}{2}-15\sqrt{15}\)
\(=\frac{21.\left(\sqrt{3}+\sqrt{5}\right)^2}{2}-\frac{6.\left(\sqrt{3}+\sqrt{5}\right)^2}{2}-15\sqrt{15}\) (đoạn này làm tắt)
\(=\frac{15.\left(\sqrt{3}+\sqrt{5}\right)^2}{2}-15\sqrt{15}\)\(=\frac{15.\left(8+2\sqrt{15}\right)}{2}-15\sqrt{15}\)
\(=60+15\sqrt{15}-15\sqrt{15}=60\)
Sửa đề
\(A=\left(2-\sqrt{3}\right)\sqrt[3]{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt[3]{26-15\sqrt{3}}\)
\(=\left(2-\sqrt{3}\right)\sqrt[3]{8+12\sqrt{3}+18+3\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt[3]{8-12\sqrt{3}+18-3\sqrt{3}}\)
\(=\left(2-\sqrt{3}\right)\sqrt[3]{\left(2+\sqrt{3}\right)^3}-\left(2+\sqrt{3}\right)\sqrt[3]{\left(2-\sqrt{3}\right)^3}\)
\(=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=0\)
1/ \(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
=\(\frac{\left(\sqrt{15}-\sqrt{5}\right)\cdot\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+1\right)}+\frac{\left(5-2\sqrt{5}\right)\cdot\left(2\sqrt{5}+4\right)}{\left(2\sqrt{5}-4\right)\cdot\left(2\sqrt{5}+4\right)}\)
=\(\frac{2\sqrt{5}}{2}+\frac{2\sqrt{5}}{4}\)
=\(\sqrt{5}+\frac{\sqrt{5}}{2}\)
=\(\frac{3\sqrt{5}}{2}\)
2/\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
=\(\frac{\left(\sqrt{15}-\sqrt{12}\right)\cdot\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\cdot\left(\sqrt{5}+2\right)}+\frac{\left(6+2\sqrt{6}\right)\cdot\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+2\right)\cdot\left(\sqrt{3}-2\right)}\)
=\(\frac{\sqrt{3}}{1}+\frac{2\sqrt{3}}{1}\)
=\(3\sqrt{3}\)
3/\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
=\(\frac{\sqrt{3}\cdot\left(3+2\sqrt{3}\right)}{3}+\frac{\left(2+\sqrt{2}\right)\cdot\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\cdot\left(\sqrt{2}-1\right)}-\left(2+\sqrt{3}\right)\)
=\(\frac{6+3\sqrt{3}}{3}+\sqrt{2}-\left(2-\sqrt{3}\right)\)
=\(\frac{3\cdot\left(2+\sqrt{3}\right)}{3}+\sqrt{2}-\left(2+\sqrt{3}\right)\)
=\(2+\sqrt{3}+\sqrt{2}-2-\sqrt{3}\)
=\(\sqrt{2}\)
Câu số 4 bạn có chắc là đúng đề bài không ạ ? Xem lại đề giúp mình nhé, cảm ơn bạn ^^