\(21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

Sửa đề

\(A=\left(2-\sqrt{3}\right)\sqrt[3]{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt[3]{26-15\sqrt{3}}\)

\(=\left(2-\sqrt{3}\right)\sqrt[3]{8+12\sqrt{3}+18+3\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt[3]{8-12\sqrt{3}+18-3\sqrt{3}}\)

\(=\left(2-\sqrt{3}\right)\sqrt[3]{\left(2+\sqrt{3}\right)^3}-\left(2+\sqrt{3}\right)\sqrt[3]{\left(2-\sqrt{3}\right)^3}\)

\(=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=0\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

a)

\(A=\sqrt{26+15\sqrt{3}}=\sqrt{\frac{52+30\sqrt{3}}{2}}=\sqrt{\frac{27+25+2\sqrt{27.25}}{2}}\)

\(=\sqrt{\frac{(\sqrt{27}+\sqrt{25})^2}{2}}=\frac{\sqrt{27}+\sqrt{25}}{\sqrt{2}}=\frac{3\sqrt{3}+5}{\sqrt{2}}=\frac{3\sqrt{6}+5\sqrt{2}}{2}\)

b)

\(B\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)

\(=\sqrt{7+1+2\sqrt{7}}-\sqrt{7+1-2\sqrt{7}}-2\)

\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{(\sqrt{7}-1)^2}-2=\sqrt{7}+1-(\sqrt{7}-1)-2=0\)

\(\Rightarrow B=0\)

c)

\(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{3+5+2\sqrt{3.5}}\)

\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{5}+\sqrt{3})^2}=(\sqrt{5}-\sqrt{3})-(\sqrt{5}+\sqrt{3})=-2\sqrt{3}\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

d)

\(D=(\sqrt{6}-2)(5+2\sqrt{6})\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(2+3+2\sqrt{2.3})\sqrt{2+3-2\sqrt{2.3}}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})^2\sqrt{(\sqrt{3}-\sqrt{2})^2}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})^2(\sqrt{3}+\sqrt{2})^2=\sqrt{2}[(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})]^2\)

\(=\sqrt{2}.1^2=\sqrt{2}\)

e)

\(E=(\sqrt{10}-\sqrt{2})\sqrt{3+\sqrt{5}}=(\sqrt{5}-1).\sqrt{2}.\sqrt{3+\sqrt{5}}\)

\(=(\sqrt{5}-1)\sqrt{6+2\sqrt{5}}=(\sqrt{5}-1)\sqrt{5+1+2\sqrt{5.1}}\)

\(=(\sqrt{5}-1)\sqrt{(\sqrt{5}+1)^2}=(\sqrt{5}-1)(\sqrt{5}+1)=4\)

f)

\(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-2\sqrt{20.9}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(\sqrt{20}-3)^2}}}=\sqrt{\sqrt{5}-\sqrt{3-(\sqrt{20}-3)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2}}=\sqrt{\sqrt{5}-(\sqrt{5}-1)}=\sqrt{1}=1\)

Ta có: \(\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)

\(=\frac{\left(2-\sqrt{3}\right)\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{52-30\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\left(2-\sqrt{3}\right)\cdot\sqrt{27+2\cdot3\sqrt{3}\cdot5+25}-\left(2+\sqrt{3}\right)\sqrt{27-2\cdot3\sqrt{3}\cdot5+25}}{\sqrt{2}}\)

\(=\frac{\left(2-\sqrt{3}\right)\sqrt{\left(3\sqrt{3}+5\right)^2}-\left(2+\sqrt{3}\right)\cdot\sqrt{\left(3\sqrt{3}-5\right)^2}}{\sqrt{2}}\)

\(=\frac{\left(2-\sqrt{3}\right)\left|3\sqrt{3}+5\right|-\left(2+\sqrt{3}\right)\left|3\sqrt{3}-5\right|}{\sqrt{2}}\)

\(=\frac{\left(2-\sqrt{3}\right)\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\sqrt{2}}\)(Vì \(3\sqrt{3}>5>0\))

\(=\frac{6\sqrt{3}+10-9-5\sqrt{3}-\left(6\sqrt{3}-10+9-5\sqrt{3}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{3}+1-\left(\sqrt{3}-1\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}\)

\(=\frac{2}{\sqrt{2}}=\sqrt{2}\)

12 tháng 11 2017

\(f,\sqrt{\dfrac{3-\sqrt{5}}{2-\sqrt{3}}}\\ =\sqrt{\dfrac{\left(3-\sqrt{5}\right)\left(2+\sqrt{3}\right)}{4-3}}\\ =\sqrt{\left(3-\sqrt{5}\right)\left(2+\sqrt{3}\right)}\\ =\sqrt{\dfrac{\left(6-2\sqrt{5}\right)\left(4+2\sqrt{3}\right)}{4}}\\ =\dfrac{\left(\sqrt{5}-1\right)\left(\sqrt{3}+1\right)}{2}\)

12 tháng 11 2017

\(a,\sqrt{3+\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)\\ =\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{2}\left(\sqrt{5}+1\right)\\ =\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}.\sqrt{6-2\sqrt{5}}.\left(\sqrt{5}+1\right)\\ =\sqrt{9-5}.\sqrt{\left(\sqrt{5}-1\right)^2}.\left(\sqrt{5}+1\right)\\ =2\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\\ =2.4\\ =8\)

a) \(\sqrt{26+15\sqrt{3}}\)

\(=\frac{\sqrt{52+30\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(3\sqrt{3}\right)^2+2.3\sqrt{3}.5+5^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(3\sqrt{3}+5\right)^2}}{\sqrt{2}}=\frac{3\sqrt{3}+5}{\sqrt{2}}\)

b) \(\)\(\sqrt{2-\sqrt{3}}=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{3}-1\right|}{\sqrt{2}}=\frac{\sqrt{3}-1}{\sqrt{2}}\)

c) \(\left(\sqrt{10}-\sqrt{2}\right).\left(\sqrt{3+5}\right)\)

\(=\sqrt{10}.\sqrt{8}-\sqrt{2}.\sqrt{8}\)

\(=\sqrt{80}-\sqrt{16}=4\sqrt{5}-4\)

d) \(\left(\sqrt{6}-2\right)\left(5+\sqrt{24}\right)\sqrt{5-\sqrt{24}}\)

\(=\left(\sqrt{6}-2\right)\left(\sqrt{5+\sqrt{24}}\right).\sqrt{5-\sqrt{24}}.\left(\sqrt{5+\sqrt{24}}\right)\)

\(=\left(\sqrt{6}-2\right)\left(\sqrt{5+\sqrt{24}}\right).1\)

\(=\left(\sqrt{6}-2\right).\left(\sqrt{5+\sqrt{24}}\right)\)

\(=\sqrt{2}.\left(\sqrt{3}-\sqrt{2}\right).\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{2}.\left(3-2\right)=\sqrt{2}\)

18 tháng 4 2017

\(B^2=\left(2-\sqrt{3}\right)^2.\left(26+15\sqrt{3}\right)+\left(2+\sqrt{3}\right)^2.\left(26-15\sqrt{3}\right)-2\left(4-3\right)\sqrt{26^2-3.15^2}\)

\(B^2=\left(7-4\sqrt{3}\right).\left(26+15\sqrt{3}\right)+\left(7+4\sqrt{3}\right)\left(26-15\sqrt{3}\right)-2\)

\(B^2+2=\left(a-b\right)\left(c+d\right)+\left(a+b\right)\left(c-d\right)=ac+ad-bc-bd+ac-ad+bc-bd=2\left(ac-bd\right)\)\(B^2+2=2.\left(7.26-4.3.15\right)=2\left(182-180\right)\Rightarrow B^2=2\)

\(B>0\Rightarrow B=\sqrt{2}\)