Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
45 - (x + 9) = 6
x + 9 = 45 - 6
x + 9 = 39
x = 39 - 9
x = 30
b) (x + 5) : 3 - 121 : 11 = 4
(x + 5) : 3 - 11 = 4
(x + 5) : 3 = 4 + 11
(x + 5) : 3 = 15
(x + 5) = 15 . 3
(x + 5) = 45
x = 45 - 5
x = 40
c) 5x + 5x + 2 = 650
5x + 5x . 25 = 650
5x .(1 + 25) = 650
5x . 26 = 650
5x = 650 : 26
5x = 25
5x = 52
=> x = 2
d) (2x + 1)3 = 9.81
(2x + 1)3 = 729
(2x + 1)3 = 93
=> 2x + 1 = 9
=> 2x = 9 - 1
=> 2x = 8
=> x = 4
4. x + 16 chia hết cho x + 1
Ta có
x + 16 = ( x + 1 ) + 15
Mà x + 1 chia hết cho 1
=> 15 phải chia hết cho x + 1
=> x + 1 thuộc Ư(15)
Ư(15) = { 1 ; 15 ; 3 ; 5 }
TH1 : x + 1 = 1 => x = 1 - 1 = 0
TH2 : x + 1 = 15 => x = 15 - 1 = 14
TH3 : x + 1 = 3 => x = 3 - 1 = 2
TH4 : x + 1 = 5 => x = 5 - 1 = 4
Vậy x = 0 ; 14 ; 4 ; 2
1
a . Để A chia hết cho 9 thì các số hạng của nó phải chia hết cho 9
Mà 963 , 2439 , 361 chia hết cho 9
=> x cũng phải chia hết cho 9
Vậy điều kiện để A chia hết cho 9 là x chia hết cho 9
Và ngược lại để A ko chia hết cho 9 thì x không chia hết cho 9
b. Tương tự phần trên nha
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
\(2+2^2+2^3+....+2^{60}\)
\(=\left(2+2^2+2^3\right)+2^3\left(2+2^2+2^3\right)+......+2^{57}\left(2+2^2+2^3\right)\)
\(=\left(2+2^2+2^3\right)\left(1+2^3+...+2^{57}\right)\)
\(=15\left(1+2^3+....+2^{57}\right)\)chia hết cho 15
1) 2x . 4 = 128
2x = 128 : 4
2x = 32
2x = 25
=> x = 5
2) (2x + 1)3 = 125
(2x + 1)3 = 53
=> 2x + 1 = 5
2x = 5 - 1
2x = 4
x = 2
các bài khác bạn tự làm nha
a) Ta có: x-4 > 0 \(\Rightarrow x>4\)
x+6 > 0 \(\Rightarrow x>-6\)
Vậy x \(\ge4\)
b) TH1: x+5 < 0 và x-12 > 0
\(\Rightarrow\) x < -5 và x >12
\(\Rightarrow\) Ko tìm đc x
TH2: x+5 > 0 và x-12 < 0
\(\Rightarrow\) x > -5 và x < 12
\(\Rightarrow-5\le x\le12\)
c) (x-11)2 = 36
(x-11)2 = 62 hoặc (x-11) = (-6)2
x-11 = 6 hoặc x-11 = -6
Vậy x = 17 hoặc x = 5
d) (21-x)2 +24 = 8
(21-x)2 = -16
Vậy ko tìm đc x
e) (22+x)3 +12 = 4
(22+x)3 = -8
(22+x)3 = (-2)3
22+x = -2
x = -24
g) x+4 \(⋮\) x+1
x+1+3 \(⋮\) x+1
\(\Rightarrow\) 3 \(⋮\) x+1
\(\Rightarrow\) \(x+1\inƯ\left(3\right)\)
\(\Rightarrow x+1\in\left\{-1;-3;1;3\right\}\)
\(\Rightarrow x+1\in\left\{-2;-4;0;2\right\}\)
\(\Rightarrow x\in\left\{-3;-5;-1;1\right\}\)
h) x+12 \(⋮\) x-3
x-3+15 \(⋮\) x-3
\(\Rightarrow15⋮x-3\)
\(\Rightarrow x-3\inƯ\left(15\right)\)
\(\Rightarrow x-3\in\left\{-1;-3;-5;-15;1;3;5;15\right\}\)
\(\Rightarrow x\in\left\{2;0;-2;-12;4;6;8;18\right\}\)
k) 2x+11 \(⋮\) x+3
2(x+3) +5 \(⋮\) x+3
\(\Rightarrow5⋮x+3\)
\(\Rightarrow x+3\inƯ\left(5\right)\)
\(\Rightarrow x+3\in\left\{-1;-5;1;5\right\}\)
\(\Rightarrow x\in\left\{-7;-11;-5;-1\right\}\)
a) ( x - 4 ) . ( x + 6 ) > 0
⇒ \(\left[{}\begin{matrix}x-4>0\\x+6< 0\\x-4< 0\\x+6>0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x>4\\x< -6\\x< 4\\x>-6\end{matrix}\right.\) ⇒ -6 < x < 4
➤ Vậy x ∈ {-5; -4; -3; ....; 1; 2; 3}
b) ( x + 5 ) . ( x - 12 ) < 0
⇒ \(\left[{}\begin{matrix}x+5>0\\x-12< 0\\x+5< 0\\x-12>0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x>-5\\x< 12\\x< -5\\x>12\end{matrix}\right.\) ⇒ -5 < x < 12
➤ Vậy x ∈ {-4; -3; -2; -1; 0; 1; 2; ... 11}
c) ( x - 11 )2 = 36
( x - 11 )2 = 62
x - 11 = 6
x = 6 + 11
x = 17
d) ( 21 - x )2 + 24 = 8
( 21 - x )2 = 8 - 24
( 21 - x )2 = -16
Cái này mũ 2 thì ko thể nào ra số âm đc
e) ( 22 + x )3 + 12 = 4
( 22 + x )3 = 4 - 12
( 22 + x )3 = -8
( 22 + x )3 = (-2)3
22 + x = -2
x = (-2) - 22
x = -24
g) x + 4 chia hết cho x + 1
Do đó ta có x + 4 = x + 1 + 3
Nên 3 ⋮ x + 1
Vậy x + 1 ∈ Ư(3) = {-1; 1; -3; 3}
Ta có bảng sau :
x + 1 | -1 | 1 | -3 | 3 |
x | -2 | 0 | -4 | 2 |
➤ Vậy x ∈ {-2; 0; -4; 2}
h) x + 12 chia hết cho x - 3
Do đó ta có x + 12 = x - 3 + 15
Nên 15 ⋮ x - 3
Vậy x - 3 ∈ Ư(15) = {-1; 1; -3; 3; -5; 5; -15; 15}
Ta có bảng sau :
x - 3 | -1 | 1 | -3 | 3 | -5 | 5 | -15 | 15 |
x | 2 | 4 | 0 | 6 | -2 | 8 | -12 | 18 |
➤ Vậy x ∈ {2; 4; 0; 6; -2; 8; -12; 18}
k) 2x + 11 chia hết cho x + 3
⇒ \(\left[{}\begin{matrix}\text{2x + 11 chia hết cho x + 3 }\\\text{2(x + 3) chia hết cho x + 3 }\end{matrix}\right.\)
2x + 11 chia hết cho 2(x + 3)
Do đó 2x + 11 = 2(x + 3) + 5
Nên 5 ⋮ x + 3
Vậy x + 3 ∈ Ư(5) = {-1; 1; -5; 5}
Ta có bảng sau :
x + 3 | -1 | 1 | -5 | 5 |
x | -4 | -2 | -8 | 2 |
➤ Vậy x ∈ {-4; -2; -8; 2}
m) 6x + 7 chia hết cho x + 2
⇒\(\left[{}\begin{matrix}\text{6x + 7 chia hết cho x + 2 }\\\text{6(x + 2) chia hết cho x + 2 }\end{matrix}\right.\)
6x + 7 chia hết cho 6(x + 2)
Do đó ta có 6x + 7 = 6(x + 2) - 5
Nên -5 ⋮ x + 2
Vậy x + 2 ∈ Ư(-5) = {-1; 1; -5; 5}
Ta có bảng sau ;
x + 2 | -1 | 1 | -5 | 5 |
x | -3 | -1 | -7 | 3 |
➤ Vậy x ∈ {-3; -1; -7; 3}
A = 213 + 214 + 215 + 216
A = 213(1+2+22+23)
A =213.15 ⋮15
vậy 213 + 214 + 215 + 216 ⋮15
bài 2
a, x ϵ B(12)/ 36≤x<60
B(12) = {0;12;24;36;48;60;72;....;}
vì 36≤x< 60 và xϵ B(12) ⇒ x ϵ{36;48}
b, 12<xϵƯ(36)
Ư(36) = {1;2;3;4;6;9;12;18;36;}
vì12< xϵƯ(36) ⇒ xϵ{18;36}
c,28 ⋮x ⇒ x ϵƯ(28) ⇒ x ϵ{1;2;4;7;14;28}
d,8⋮(x-1) ⇒x -1 ϵ {-8;-4;-2;-1;1;2;4;8}
⇒ x ϵ{-7;-3;-1;0;2;3;5;9} ⇒ xϵ{0;2;3;5;9} vì x là số tự nhiên
e, 7 ⋮(x-3) ⇔x-3 ϵ{-7;-1;1;7}⇔xϵ{-4;2;4;10}
⇔ xϵ{2;4;10} vì x là số tự nhiên
g, 12⋮(2x+1) ⇔ 2x+1 ϵ{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}
⇔x ϵ{0;1;} vì x là số tự nhiên