Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 32 + 34 + 36 +........+ 32024
A = 32.( 1 + 32 + 34 +......+ 32022)
=> A ⋮ 1; 3; 9; A
Vậy A là hợp số
hợp số cậu nhé
_Số nguyên tố là số lớn hơn 1,chỉ có 2 ước là 1 và chính nó
_Hợp số là số lớn hơn 1,có nhiều hơn 2 ước
Vì \(\hept{\begin{cases}2.3.5.11⋮3\\13.17.19.21⋮3\end{cases}\Rightarrow2.3.5.11+13.17.19.21⋮3}\)
Mà \(2.3.5.11+13.17.19.21>3\)
=> A là hợp số
Ta có : n là số nguyên tố > 3
=> n2 = không chia hết cho 3
=> n2 = 3k + 1
vậy 3k+1+2006 = 3k + 2007
ta có: 3k chia hết cho 3
2007 chia hết cho 3 nên n2+2006 là hợp số
Vì n lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2:
Với n = 3k +1 thì:
n^2 + 2006 = (3k+1). (3k+1) +2006
= 9.k.k + 3k+3k+1 + 2006
= 3.(3.k.k +1+1)+1+2006
= 3.(3.k.k +1+1) + 2007 chia hết cho 3
=> Với n = 3k+1 thì n^2 + 2006 là hợp số
Với n= 3k+2 thì:
(3k+2).(3k+2)+2006 = 9.k.k+6k+6k+4+2006
=3(3.k.k + 2k +2k)+4+2006
=3(3.k.k +2k+2k)+2010 chia hết cho 3
=>Với n = 3k+2 thì n^2 +2006 là hợp số
Vậy với mọi số nguyên tố n lớn hơn 3 thì n^2 +2006 là hợp số
(Hãy làm theo cách của mình đi, đúng đó.Từ đóhãy tick cho mình nha)
=
TH1: n = 3k + 1 => (3k + 1)2 + 2006 <=> 9k2 + 6k + 1 + 2006 = 3k(3k + 2) + 2007
3k(3k + 2) chia hết cho 3 và 2007 chia hết cho 3 =>[3k(3k + 2) + 2007] chia hết cho 3 (1)
TH2: n = 3k + 2 => (3k + 2)2 + 2006 <=> 9k2 + 12k + 4 + 2006 = 3k(3k + 4) + 2010
3k(3k + 4) chia hết cho 3 và 2010 chia hết cho 3 => [3k(3k + 4) + 2010] chia hết cho 3 (2)
Từ (1) và (2) => n2 + 2006 là hợp số
Với n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 4 + 2006 = 9k2 + 2010 = 3. (3k2 + 670) chia hết cho 3, là hợ số. Vậy n2 + 2006 là hợp số. Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
Vậy là hợp số
Ta gọi tổng này là A
Ta có:A=2^100.7.11+3^81.13.14
A=2^100.7.11+3^81.13.2.7
A=7.(2^100.11+3^81.13.2) chia hết cho 7 mà A>7
=>A là hợp số
Ta gọi tổng này là A
Ta có : A=2^100.7.11+3^81.12.14
A=2^100.7.11+3^81.13.2.7
A=7.(2^100.11+3^81.13.2) chia hết cho 7 mà A>7
Vậy A là hợp số