K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2023

A = \(\dfrac{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}\)

Xét TS = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) \(\dfrac{2020}{3}\) +... + \(\dfrac{1}{2022}\)

      TS = (1 + \(\dfrac{2021}{2}\)) + (1 + \(\dfrac{2020}{3}\)) + ... + ( 1 + \(\dfrac{1}{2022}\)) + 1 

      TS = \(\dfrac{2023}{2}\) + \(\dfrac{2023}{3}\) +...+ \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2023}\)

      TS =  2023.(\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) +...+ \(\dfrac{1}{2023}\))

A = \(\dfrac{2023.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}{\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}\)

 A = 2023

1 tháng 12 2023

Em cảm ơn ạ

\(B=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^4+...-\dfrac{1}{2022}+\dfrac{1}{2023}\\ \Rightarrow B=\dfrac{2}{2^2}-\dfrac{1}{2^2}+\dfrac{2}{2^4}-\dfrac{1}{2^4}+...+\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)

\(\Rightarrow B=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{2024}}\)

\(\Rightarrow B=\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+...+\dfrac{1}{2^{2024}}\\ \Rightarrow2^2B=\dfrac{2^{2024}}{2^{2024}}+\dfrac{2^{2022}}{2^{2024}}+...+\dfrac{2^2}{2^{2024}}\)

\(\Rightarrow4B-B=\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\\ \Rightarrow3B=1-\left(\dfrac{2}{2^{2024}}+\dfrac{1}{2^{2024}}\right)\)

\(\Rightarrow3B=1-\dfrac{3}{2^{2024}}\\ \Rightarrow B=\dfrac{1-\dfrac{3}{2^{2024}}}{3}\)

\(\Rightarrow B=\dfrac{3\left(\dfrac{1}{3}-\dfrac{1}{2^{2024}}\right)}{3}\\ B=\dfrac{1}{3}-\dfrac{1}{2^{2024}}\)

 

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Lời giải:

$A=1-3+3^2-3^3+...+3^{2022}-\frac{3^{2023}}{4}$

$3A=3-3^2+3^3-3^4+...+3^{2023}-\frac{3^{2024}}{4}$

$\Rightarrow A+3A=1+3^{2023}-\frac{3^{2023}}{4}-\frac{3^{2024}}{4}$

$\Rightarrow 4A=1$

$\Rightarrow A=\frac{1}{4}$

AH
Akai Haruma
Giáo viên
25 tháng 3 2023

Lời giải:
$A=\frac{1}{4}(1-3+3^2-3^3+...+3^{2022}-3^{2023})$

$3A=\frac{1}{4}(3-3^2+3^3-3^4+....+3^{2023}-3^{2024})$

$3A+A=\frac{1}{4}(3-3^2+3^3-3^4+....+3^{2023}-3^{2024}+1-3+3^2-3^3+...+3^{2022}-3^{2023})$

$4A=\frac{1}{4}(1-3^{2024})$

$A=\frac{1}{16}(1-3^{2024})$

5 tháng 1 2023

\(\dfrac{x+1}{2023}+\dfrac{x+2}{2022}=\dfrac{x+3}{2021}+\dfrac{x+4}{2020}\\ \Leftrightarrow\dfrac{x+1}{2023}+1+\dfrac{x+2}{2022}+1=\dfrac{x+3}{2021}+1+\dfrac{x+4}{2020}+1\\ \Leftrightarrow\dfrac{x+1+2023}{2023}+\dfrac{x+2+2022}{2022}-\dfrac{x+3+2021}{2021}-\dfrac{x+4+2020}{2020}=0\\ \Leftrightarrow\left(x+2024\right)\times\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)=0\\ \Rightarrow x+2024=0:\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)\\ \Rightarrow x+2024=0\\ \Rightarrow x=-2024\)

5 tháng 1 2023

Tham khảo câu trả lời:

16 tháng 8 2023

\(S=-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+...+\dfrac{1}{5^{2022}}-\dfrac{1}{5^{2023}}\)

\(\Rightarrow\dfrac{25}{5}=-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{2021}}-\dfrac{1}{5^{2022}}\)

\(\Rightarrow5S+S=\left(-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{2021}}-\dfrac{1}{5^{2022}}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5^2}-...+\dfrac{1}{5^{2022}}-\dfrac{1}{5^{2023}}\right)\)

\(\Rightarrow6S=-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{2021}}-\dfrac{1}{5^{2022}}-\dfrac{1}{5}+\dfrac{1}{5^2}-...+\dfrac{1}{5^{2022}}-\dfrac{1}{5^{2023}}\)

\(\Rightarrow6S=-1-\dfrac{1}{5^{2023}}\)

\(\Rightarrow S=\dfrac{-1-\dfrac{1}{5^{2023}}}{6}\)