Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2020/2021<1
2021/2022<1
2022/2023<1
2023/2020=1+1/2020+1/2020+1/2020>1+1/2021+1/2022+1/2023
=>B>2020/2021+2021/2022+2022/2023+1/2021+1/2022+1/2023+1=4
Đặt
Đặt
Biểu thức có số số hạng là:
(số hạng)
Số nhóm được lập là:
(nhóm)
[ số hạng]
Vậy
2011+2012+2013+2014+2015+2016+2017+2018+2019+2020+2021+ 2022+2023 =(2011+2023)+(2013+2022)+...+(2016+2018)+2017 =4034+4034+4034+4034+4034+4034+2017 =4034x6+2017=26221
2011+2012+2013+2014+2015+2016+2017+2018+2019+2020+2021+2022+2023
=(2011+2023)+(2013+2022)+...+(2016+2018)+2017 =4034+4034+4034+4034+4034+4034+2017 =4034x6+2017=26221
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
3S=3-3^2+...-3^2022+3^2023
=>4S=3^2023+1
=>4S-3^2023=1
Lời giải:
$A=(-1-2+3+4)+(-5-6+7+8)+(-9-10+11+12)+...+(-2021-2022+2023+2024)-2024$
$=\underbrace{4+4+...+4}_{506}-2024$
$=4.506-2024=0$
\(=\dfrac{2022.2023-3.2022}{2020.2021+2020}=\dfrac{2022\left(2023-3\right)}{2020\left(2021+1\right)}=1\)
1