Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2^5.9-2^5.7\right)\div2^3-2021^0\)
\(=2^5\left(9-7\right)\div2^3-1\)
\(=2^6\div2^3-1\)
\(=2^3-1\)
\(=7\)
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
\(=\dfrac{2021}{2022}\left(\dfrac{6}{17}-\dfrac{23}{17}\right)+\dfrac{2021}{2022}=\dfrac{-2021}{2022}+\dfrac{2021}{2022}=0\)
Đáp án cần chọn là: C
Ta có: 2021(x−2021)=2021
x–2021=2021:2021
x–2021=1
x=1+2021
x=2022
Vậy x=2022.
\(\left(2021-x\right)\left(x+2021\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=-2021\end{matrix}\right.\)
\(\Leftrightarrow x=\pm2021\)
\(\Rightarrow2021-x=0\) hoặc \(x+2021=0\)
\(\Rightarrow x=2021\) hoặc \(x=-2021\)
\(\Rightarrow x\in\left\{2021;-2021\right\}\)
\(\dfrac{2021}{1\cdot5}+\dfrac{2021}{5\cdot9}+...+\dfrac{2021}{x\cdot\left(x+4\right)}=505\)
\(2021\cdot\left(\dfrac{1}{1.5}+\dfrac{1}{5\cdot9}+...+\dfrac{1}{x\cdot\left(x+4\right)}\right)=505\)
\(\dfrac{2021}{4}\cdot\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{x\cdot\left(x+4\right)}\right)=505\)
\(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{x}-\dfrac{1}{x+4}=\dfrac{2020}{2021}\)
\(1-\dfrac{1}{x+4}=\dfrac{2020}{2021}\)
\(\dfrac{1}{x+4}=\dfrac{1}{2021}\)
=> \(x+4=2021\)
=> \(x=2017\)
vậy \(x=2017\)
Ta có: \(\dfrac{2021}{1\cdot5}+\dfrac{2021}{5\cdot9}+...+\dfrac{2021}{x\left(x+4\right)}=505\)
\(\Leftrightarrow\dfrac{2021}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{x\left(x+4\right)}\right)=505\)
\(\Leftrightarrow1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{x}-\dfrac{1}{x+4}=\dfrac{2020}{2021}\)
\(\Leftrightarrow-\dfrac{1}{x+4}=\dfrac{2020}{2021}\)
\(\Leftrightarrow x+4=\dfrac{-2021}{2020}\)
hay \(x=-\dfrac{10101}{2020}\)