Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2^5.9-2^5.7\right)\div2^3-2021^0\)
\(=2^5\left(9-7\right)\div2^3-1\)
\(=2^6\div2^3-1\)
\(=2^3-1\)
\(=7\)
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
23-(-27)+(-50) = 0
234+(-117)-100+(-234) = -217
-927-(-1421)-(930)+(-1421) = -1020
2021-[-2022-(-2021)] = 2021
1-2+3-4+...+2021-2022=
A=1-2+3-4+...+2021-2022
=(1-2)+(3-4)+...+(2021-2022) (có tất cả 1011 cặp)
=(-1).(-1)...(-1)
=(-1).1011=-1011
HOk tốt!!!!!!!!!!!!!
23 - ( - 27 ) + ( - 50 ) = 0
234 + ( - 117 ) - 100 + ( - 234 ) = - 217
- 927 - ( - 1421 ) - ( 930 ) + ( - 1421 ) = 985
2021 - [ - 2022 - ( - 2021 )] = 2022
1 - 2 + 3 - 4 + ...+ 2021 - 2022
=(1-2)+(3-4)+...+(2021-2022)
=(-1)+(-1)+...
=(-1)x(2022:2)
= -1011
A = \(\dfrac{2^{2021}+1}{2^{2021}}\) = \(\dfrac{2^{2021}}{2^{2021}}\) + \(\dfrac{1}{2^{2021}}\) = 1 + \(\dfrac{1}{2^{2021}}\)
B = \(\dfrac{2^{2021}+2}{2^{2021}+1}\) = \(\dfrac{2^{2021}+1+1}{2^{2021}+1}\) = \(\dfrac{2^{2021}+1}{2^{2021}+1}\) +\(\dfrac{1}{2^{2021}+1}\) = 1 + \(\dfrac{1}{2^{2021}+1}\)
Vì \(\dfrac{1}{2^{2021}}\) > \(\dfrac{1}{2^{2021}+1}\) nên 1 + \(\dfrac{1}{2^{2021}}\) > 1 + \(\dfrac{1}{2^{2021}+1}\)
Vậy A > B
1/2 + 1/6+1/12 + 1/20 +....+ 1/x(x+1) = 2021/2022
1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +...+ 1/x. (x+1) = 2021/2020
1 - 1/2 + 1/2 - 1/3 + 1/3- 1/4 + 1/4 - 1/5 +...+ 1/x - 1/(x+1) = 2021/2020
1 - 1/(x+1) = 2021/2020
1/(x+1) = 1 - 2021/2020
1/(x+1) = -1/2020
1/(x+1) = 1/-2020
x + 1 = - 2020
x = -2020 - 1
x = -2021
Giải:
1/2+1/6+1/12+1/20+...+1/x.(x+1)=2021/2022
1/1.2+1/2.3+1/3.4+1/4.5+...+1/x.(x+1)=2021/2022
1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=2021/2022
1/1-1/x+1 =2021/2022
1/x+1 =1/1-2021/2022
1/x+1 =1/2022
⇒x+1=2022
x=2022-1
x=2021
Chúc bạn học tốt!
\(\dfrac{2021}{1\cdot5}+\dfrac{2021}{5\cdot9}+...+\dfrac{2021}{x\cdot\left(x+4\right)}=505\)
\(2021\cdot\left(\dfrac{1}{1.5}+\dfrac{1}{5\cdot9}+...+\dfrac{1}{x\cdot\left(x+4\right)}\right)=505\)
\(\dfrac{2021}{4}\cdot\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{x\cdot\left(x+4\right)}\right)=505\)
\(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{x}-\dfrac{1}{x+4}=\dfrac{2020}{2021}\)
\(1-\dfrac{1}{x+4}=\dfrac{2020}{2021}\)
\(\dfrac{1}{x+4}=\dfrac{1}{2021}\)
=> \(x+4=2021\)
=> \(x=2017\)
vậy \(x=2017\)
Ta có: \(\dfrac{2021}{1\cdot5}+\dfrac{2021}{5\cdot9}+...+\dfrac{2021}{x\left(x+4\right)}=505\)
\(\Leftrightarrow\dfrac{2021}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{x\left(x+4\right)}\right)=505\)
\(\Leftrightarrow1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{x}-\dfrac{1}{x+4}=\dfrac{2020}{2021}\)
\(\Leftrightarrow-\dfrac{1}{x+4}=\dfrac{2020}{2021}\)
\(\Leftrightarrow x+4=\dfrac{-2021}{2020}\)
hay \(x=-\dfrac{10101}{2020}\)