K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2023

2021 + \(\dfrac{3}{(3+\dfrac{3}{3-x})}\)     =    2023

            \(\dfrac{3}{(3+\dfrac{3}{3-x})}\)    = 2023 - 2021 

           \(\dfrac{3}{(3+\dfrac{3}{3-x})}\) = 2

              3 + \(\dfrac{3}{3-x}\) = \(\dfrac{3}{2}\) 

                     \(\dfrac{3}{3-x}\) = \(\dfrac{3}{2}\) - 3

                     \(\dfrac{3}{3-x}\) = - \(\dfrac{3}{2}\)

                       3 - \(x\) = 3 : ( -\(\dfrac{3}{2}\))

                     3 - \(x\) = -2

                          \(x\) = 3  - ( -2) 

                           \(x\) = 5

Vậy \(x\) = 5

5 tháng 4 2023

x=7 nha

9 tháng 5 2022

`2x-15=-25`

`2x=-10`

`x=-5`

___________

`3/5<x/10<4/5`

`3/5=(3xx10)/(5xx10)=30/50`

`x/10=(5x)/(10xx5)=(5x)/50`

`4/5=(4xx10)/(5xx10)=40/50`

`=>30/50<(5x)/50<40/50`

`=>30<5x<40`

`=>x=7`

7 tháng 3 2020

Yêu cầu đề bài là gì j bn

8 tháng 3 2020

tính

7 tháng 3 2020

S3=1+(-3)+5+(-7)+....+2021+(-2023)

S3=[1+(-3)]+[5+(-7)]+...+[2021+(-2023)]

S3=-2+(-2)+...+(-2)        ( có 1011 số -2 )

S3=-2. 1011

S3=-2022

7 tháng 3 2020

S3=1+(-3)+5+(-7)+....+2021+(-2023)

   = 1-3+5-7+...+2021-2023

   =(1-3)+(5-7)+...+(2021-2023)(có 506 cặp như vậy)

   = -2.506

=-1012

Vậy S3=-1012

26 tháng 11 2023

a:

Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)

Từ 1 đến 2025 sẽ có:

\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)

Ta có: 1-3=5-7=...=2021-2023=-2

=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này

=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)

b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)

Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)

Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4

=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này

=>\(S=506\cdot\left(-4\right)=-2024\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2023

Bạn nên viết đầy đủ yêu cầu đề và gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn nhé.

26 tháng 12 2024

B = (3^2023 - 3^2022) + (3^2021 - 3^2020) + ... + (3 - 1)
= 3^2022(3 - 1) + 3^2020(3 - 1) + ... + 1(3 - 1)
= 2(3^2022 + 3^2020 + ... + 1)
Đặt: A = 3^2023 + 3^2021 + ... + 3 B = 3^2022 + 3^2020 + ... + 1
Ta có: B = A - 3^2022 A = 3B
=> 2B = A
Mặt khác: A + B = 3^2023 + 3^2022 + 3^2021 + ... + 3 + 1 Đây là tổng của một cấp số nhân với công bội là 3.
=> A + B = (3^2024 - 1) / 2
Từ đó suy ra: B = (A + B) / 2 - A = (3^2024 - 1) / 4 - A
= (3^2024 - 1 - 4A) / 4
 

  • Nhóm 5 số hạng liên tiếp: Ta sẽ nhóm B thành các nhóm 5 số hạng liên tiếp. Mỗi nhóm sẽ có dạng: 3^k - 3^(k-1) + 3^(k-2) - 3^(k-3) + 3^(k-4) = 3^(k-4)(3^4 - 3^3 + 3^2 - 3 + 1) = 3^(k-4) * 61

  • Phân tích:

    • Ta thấy 61 không chia hết cho 5.
    • Tuy nhiên, khi nhân 61 với các lũy thừa của 3, ta sẽ luôn thu được một số có chữ số tận cùng là 3.
    • Khi trừ đi các số hạng tiếp theo (3^(k-1), 3^(k-2), ...), chữ số tận cùng của kết quả vẫn sẽ là 3 hoặc 8 (do 3 - 1 = 2, 8 - 1 = 7).
    • Quan trọng: Không có số nào có chữ số tận cùng là 3 hoặc 8 mà chia hết cho 5.

Kết luận:

  • Từ phân tích trên, ta thấy mỗi nhóm 5 số hạng liên tiếp khi cộng lại sẽ không chia hết cho 5.
  • Do đó, B cũng sẽ không chia hết cho 5.

Kết luận chung:

  • Chúng ta đã chứng minh được B chia hết cho 2.
  • Tuy nhiên, B lại không chia hết cho 5.