Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mõi x,y ta có ;
\(\left\{{}\begin{matrix}\left(x+1\right)^{2018}\ge0\\\left(y+2\right)^{2020}\ge0\end{matrix}\right.\)
Mà \(\left(x+1\right)^{2018}+\left(y+2\right)^{2020}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^{2018}=0\\\left(y+2\right)^{2020}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Lại có : \(A=3x^2y-4x^2y+1\)
\(\Rightarrow A=-x^2y+1\)
\(\Leftrightarrow A=-\left(-1\right)^2.\left(-2\right)+1\)
\(=-2+1=-1\)
b) Vì GTTĐ luôn lớn hơn hoặc bằng 0
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+...+\left|x+9\right|\ge0\forall x\)
\(\Leftrightarrow10x\ge0\forall x\)
\(\Leftrightarrow x\ge0\)
Từ đây ta có :
\(x+1+x+2+...+x+9=10x\)
\(9x+45=10x\)
\(10x-9x=45\)
\(x=45\)
Vậy x = 45
\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0\)
Ta có:
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2020}\ge0\\\left(3y+4\right)^{2018}\ge0\end{matrix}\right.\forall xy.\)
\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\ge0\) \(\forall xy.\)
Mà \(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0.\)
\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}=0\)
\(\Rightarrow\left(2x-5\right)+\left(3y+4\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)
Chúc bạn học tốt!
Vì (2x+3 )^2018>= 0 ; (3y-5)^2020 >=0
=>(2x + 3)2018+ (3y-5)2020 >= 0
mà (2x + 3)2018+ (3y-5)2020 (< hoặc =) 0
=> (2x + 3)2018+ (3y-5)2020 = 0
=> (2x+3 )^2018= 0 ; (3y-5)^2020 =0
=> 2x+3=0 ; 3y-5=0
=> 2x=-3; 3y=5
=> x=-3/2; y=5/3
b)(x - y - 7)2 >=0; (4x - 3y - 24)2 >= 0
=> (x - y - 7)2 + (4x - 3y - 24)2 >= 0
Dấu = xảy ra <=> (x - y - 7)2 =0; (4x - 3y - 24)2 = 0
<=> x-y-7=0 ; 4x-3y-24=0
<=> x-y=7 ; 4x-3y=24
<=> 4x-4y=28; 4x-3y=24
<=> y=-4; x-y=7
<=> y=-4 ; x=3