K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

Với mõi x,y ta có ;

\(\left\{{}\begin{matrix}\left(x+1\right)^{2018}\ge0\\\left(y+2\right)^{2020}\ge0\end{matrix}\right.\)

\(\left(x+1\right)^{2018}+\left(y+2\right)^{2020}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^{2018}=0\\\left(y+2\right)^{2020}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)

Lại có : \(A=3x^2y-4x^2y+1\)

\(\Rightarrow A=-x^2y+1\)

\(\Leftrightarrow A=-\left(-1\right)^2.\left(-2\right)+1\)

\(=-2+1=-1\)

4 tháng 3 2020

A=\( {1 \over 2}\)y.4x2y4+3x4y5

=2x2y5+3x4y5

ta có gt=>x=2;y=-1

thay vào đc A=56

1 tháng 3 2020

Vì |2x-y| \(\ge0\)\(\forall x,y\)

\(\left(y+2\right)^{2018}\ge0\forall y\)

\(\Rightarrow\left|2x-y\right|+\left(y+2\right)^{2018}\ge0\)

Dấu = xảy ra

\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y+2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)(Thay vào C ta đc )

\(C=2\cdot\left(-1\right)^{2019}-5\left(-2\right)^3+2019\)=2057

Vậy .......

1 tháng 3 2020

Vì /2x-y/ \(\ge\)0 với mọi x,y,

(y + 2)2018\(\ge\)0 với mọi y

suy ra \(|2x-y|\)+ (y + 2)2018\(\ge\)0 với mọi x,y   (1)

mà suy ra \(|2x-y|\)+ (y + 2)2018​ =0    (2)

Từ (1) và (2) suy ra \(|2x-y|\)=0 và (y + 2)2018​ = 0

suy ra 2x=y và y=-2

suy ra x=-1 và y=-2

Như vậy C= 2. ( -1)2019 - 5 (-2) 3 + 2019 = -2 +40 + 2019 = 2057

 
16 tháng 3 2019

GIÚP MK VS MK ĐANG CẦN GẤP

16 tháng 3 2019

a, x^2-x=0

<=> x(x-1)=0 => x=0 hoặc x=1 thay vào A là tính được

b,có cho y đâu mà tính

16 tháng 10 2019

ta có x2+2y+1+y2+2z+1+z2+2x+1=0

=>(x2+2x+1)+(y2+2y+1)+(z2+2z+1)=0

=>(x+1)2+(y+1)2+(z+1)2=0

Vì (x+1)2> hoặc = 0

.......

=> x=-1,y=-1,z=-1

sau đó thay vào nha

11 tháng 3 2018

1, 3x2.(-2y)3 = [3.(-2)](x2.y3) = -6x2y3

Hệ số: -6

phần biến: x2y3

bậc của đơn thức: 5

2,a, \(P=4x^4y^2+\frac{5}{6}+3x^3y^5-3x^4y^2+4y^3-\frac{1}{3}x^3y^5-x^4y^2\)

\(=\left(4x^4y^2-3x^4y^4-x^4y^4\right)+\left(3x^3y^5-\frac{1}{3}x^3y^5\right)+\frac{5}{6}+4y^3\)

\(=\frac{8}{3}x^3y^5+\frac{5}{6}+4y^3\)

b, bậc cua đa thức P là 8

c, Thay x = 2, y = 0,5 vào P ta được

\(P=\frac{8}{3}.2^3.\left(0,5\right)^5+\frac{5}{6}+4.\left(0,5\right)^3\)

\(=\frac{8}{3}.8.\frac{1}{32}+\frac{5}{6}+4.\frac{1}{8}\)

\(=\frac{2}{3}+\frac{5}{6}+\frac{1}{2}\)

\(=2\)

13 tháng 3 2016

câu 2a) xét (x-1)2> hoặc = 0

(x-1)2+(y+1)2> hoặc bằng 0

(x-1)2+(y+1)2+3> hoặc =3

=> GTNN của biểu thức trên là 3

13 tháng 3 2016

GIÚP minh vs mai mình nộp rui!!!!!!!!!!!!!!!!!!!!@@@@@@@@@@

10 tháng 2 2017

Vì \(\left(x+1\right)^{20}\ge0;\left(y+2\right)^{26}\ge0\) ( số mũ đều chẵn )

\(\Rightarrow\left(x+1\right)^{20}+\left(y+2\right)^{26}\ge0\)

Dấu "=" xảy ra <=> \(\left(x+1\right)^{20}=0;\left(y+2\right)^{26}=0\)

=> \(x+1=0;y+2=0\)

=> x = - 1; y = - 2

\(\Rightarrow2.x^8-3x^5+2=2.\left(-1\right)^8-3.\left(-1\right)^5+2=7\)