Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; \(\dfrac{93}{17}\): \(x\) + (- \(\dfrac{21}{17}\)) : \(x\) + \(\dfrac{22}{7}\): \(\dfrac{22}{3}\) = \(\dfrac{5}{14}\)
\(\dfrac{94}{17}\) \(\times\) \(\dfrac{1}{x}\) - \(\dfrac{21}{17}\) \(\times\) \(\dfrac{1}{x}\) + \(\dfrac{3}{7}\) = \(\dfrac{5}{14}\)
\(\dfrac{72}{17}\) \(\times\) \(\dfrac{1}{x}\) + \(\dfrac{3}{7}\) = \(\dfrac{5}{14}\)
\(\dfrac{72}{17x}\) = \(\dfrac{5}{14}\) - \(\dfrac{3}{7}\)
\(\dfrac{72}{17x}\) = - \(\dfrac{1}{14}\)
17\(x\) = 72.(-14)
17\(x\) = - 1008
\(x\) = - 1008 : 17
\(x\) = - \(\dfrac{1008}{17}\)
Vậy \(x\) \(=-\dfrac{1008}{17}\)
b; - \(\dfrac{32}{27}\) - (3\(x\) - \(\dfrac{7}{9}\))3 = - \(\dfrac{24}{27}\)
- \(\dfrac{32}{27}\) + \(\dfrac{24}{27}\) = (3\(x\) - \(\dfrac{7}{9}\))3
(3\(x-\dfrac{7}{9}\))3 = - \(\dfrac{8}{27}\)
(3\(x-\dfrac{7}{9}\))3 = (- \(\dfrac{2}{3}\))3
3\(x-\dfrac{7}{9}\) = - \(\dfrac{2}{3}\)
3\(x\) = - \(\dfrac{2}{3}\) + \(\dfrac{7}{9}\)
3\(x\) = \(\dfrac{1}{9}\)
\(x\) = \(\dfrac{1}{9}\) : 3
\(x\) = \(\dfrac{1}{27}\)
Vậy \(x=\dfrac{1}{27}\)
Nhận thấy \(3,75-2,5\times1,5=3,75-3,75=0\)
NÊN A =\(\left(1995;0,25+1996;4\right)\times2010\times2011\times0\)
Vậy A = \(0\)
A= (1995 : 0,25 + 1996 : 4) . 2010 . 2011 . (3,75 - 2,5 . 1,5)
A=(1995 : 0,25 = 1996 : 4) . 2010 . 2011 . (3,75 - 3,75)
A=(1995 : 0,25 = 1996 : 4) . 2010 . 2011 . 0
A= 0
a, Ta có: \(\frac{2001}{2002}=\frac{2002-1}{2002}=\frac{2002}{2002}-\frac{1}{2002}=1-\frac{1}{2002}\)
\(\frac{2000}{2001}=\frac{2001-1}{2001}=\frac{2001}{2001}-\frac{1}{2001}=1-\frac{1}{2001}\)
Vì \(\frac{1}{2002}< \frac{1}{2001}\Rightarrow1-\frac{1}{2002}>1-\frac{1}{2001}\Rightarrow\frac{2001}{2002}>\frac{2000}{2001}\)
b, Ta có: \(\left(\frac{1}{80}\right)^7>\left(\frac{1}{81}\right)^7=\left(\frac{1}{3^4}\right)^7=\left(\frac{1}{3}\right)^{28}=\frac{1}{3^{28}}\)
\(\left(\frac{1}{243}\right)^6=\left(\frac{1}{3^5}\right)^6=\left(\frac{1}{3^5}\right)^6=\frac{1}{3^{30}}\)
Vì \(\frac{1}{3^{28}}>\frac{1}{3^{30}}\Rightarrow\left(\frac{1}{81}\right)^7>\left(\frac{1}{243}\right)^6\Rightarrow\left(\frac{1}{80}\right)^7>\left(\frac{1}{243}\right)^6\)
c, Ta có: \(\left(\frac{3}{8}\right)^5=\frac{3^5}{\left(2^3\right)^5}=\frac{243}{2^{15}}>\frac{243}{3^{15}}>\frac{125}{3^{15}}=\frac{5^3}{\left(3^5\right)^3}=\frac{5^3}{243^3}=\left(\frac{5}{243}\right)^3\)
Vậy \(\left(\frac{3}{8}\right)^5>\left(\frac{5}{243}\right)^3\)
d, Ta có: \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2012+2013}\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)
e, \(C=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(D=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)
Vì \(\frac{2}{10^{10}-1}< \frac{2}{10^{10}-3}\Rightarrow1+\frac{2}{10^{10}-1}< 1+\frac{2}{10^{10}-3}\Rightarrow C< D\)
g, \(G=\frac{10^{100}+2}{10^{100}-1}=\frac{10^{100}-1+3}{10^{100}-1}=\frac{10^{100}-1}{10^{100}-1}+\frac{3}{10^{100}-1}=1+\frac{3}{10^{100}-1}\)
\(H=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì \(\frac{3}{10^{100}-1}< \frac{3}{10^8-3}\Rightarrow1+\frac{3}{10^{100}-1}< 1+\frac{3}{10^8-3}\Rightarrow G< H\)
h, Vì E < 1 nên:
\(E=\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=F\)
Vậy E = F
a) \(\left\{{}\begin{matrix}\dfrac{2011}{2012}< 1\\\dfrac{2012}{2011}>1\end{matrix}\right.\Rightarrow\dfrac{2011}{2012}< \dfrac{2012}{2011}\)
b)\(\left\{{}\begin{matrix}\dfrac{2000}{2013}\\\dfrac{2011}{2012}\end{matrix}\right.\left\{{}\begin{matrix}2000< 2011\\2013>2012\end{matrix}\right.\Rightarrow\left\{{}\dfrac{2000}{2013}}< \dfrac{2011}{2012}}}\)
a) Ta có: \(\left\{{}\begin{matrix}\dfrac{2011}{2012}< \dfrac{2012}{2012}=1\\\dfrac{2012}{2011}>\dfrac{2011}{2011}=1\end{matrix}\right.\) => \(\dfrac{2011}{2012}< \dfrac{2012}{2011}\)
b) sửa đề: \(\dfrac{2010}{2013}\) và \(\dfrac{2011}{2012}\)
Ta có: \(\left\{{}\begin{matrix}\dfrac{2010}{2013}< \dfrac{2010}{2012}\\\dfrac{2011}{2012}>\dfrac{2010}{20122}\end{matrix}\right.\) => \(\dfrac{2010}{2013}< \dfrac{2010}{2012}< \dfrac{2011}{2012}\)
=> \(\dfrac{2010}{2013}< \dfrac{2011}{2012}\)
P/s: Thật ra câu b ko cần sửa đề cx đc nhg mà thấy sai sai nên sửa thôi. Hjhj
Áp dụng BĐT \(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}>\frac{a+b+c}{a+b+c}=1>\frac{a+b+c}{b+c+d}\).
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2010+2011+2012}>\frac{2010+2011+2012}{2011+2012+2013}\)mà 2010 + 2011 + 2012 < 2011+2012+2013 ,suy ra \(\frac{2010+2011+2012}{2011+2012+2013}< 1\))
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)hay P > Q
Vậy P > Q
b) Áp dụng công thức BCNN (a, b) . UCLN (a,b) = a.b
\(\Rightarrow a.b=420.21=8820\)
Ta có:
\(ab=8820\)
\(a+21=b\Rightarrow b-a=21\)
Hai số cách nhau 21 mà có tích là 8820 là 84 , 105
Mà a + 21 = b suy ra a < b
Vậy a = 84 ; b = 105
a,-Cách khác:
-Ta có: \(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
-Mà: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\left(1\right)\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\left(2\right)\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\left(3\right)\)
\(\Rightarrow P>Q\)
(2000×7,5+2012÷3)×(21-3,5×0,25)×(11,2-10-1,2)×(3,75-0,75)/2011+3,14=15670.6666667x20.125x0x3:2014.14=0
học tót
(2000×7,5+2012÷3)×(21-3,5×0,25)×(11,2-10-1,2)×(3,75-0,75)/2011+3,14
=(2000×7,5+2012÷3)×(21-3,5×0,25)×(1,2-1,2)×(3,75-0,75)/2011+3,14
=(2000×7,5+2012÷3)×(21-3,5×0,25)×0×(3,75-0,75)/2011+3,14
=0