![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ukm bài này
làm rồi
để nghỉ lại đã có thời gian thì làm hộ cho nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 230 = (23)10 = 810
320 = (32)10 = 910
Vì 810 < 910 nên 230 < 320
b) 540 = (52)20 = 2520
Vì 2520 > 2516 nên 540 > 2516
![](https://rs.olm.vn/images/avt/0.png?1311)
S1 số số số hạng là: (299-2):3+1=100 số
s=(299+2)x100:2=15050
S2=1+2+2^2+2^30
=3+4+1073741824
=1073741831
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,[\left(8.x-12\right):4].3^3.3=3^6.6\)
\(\left(8x-12\right):4=54\)
\(8x-12=216\)
\(8x=228\)
\(x=28,5\)
\(b,41-2^{x+1}=9\)
\(2^{x+1}=41-9\)
\(2^{x+1}=32\)
\(2^{x+1}=2^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
530 = 5 . 529
5 . 529 < 6 . 529 ( vì 5 < 6 )
vậy 530 < 6 . 529
Ta có: \(5^{30}=5\cdot5^{29}\)
\(6\cdot5^{29}\)
Vì \(5< 6\Rightarrow5\cdot5^{29}< 6\cdot5^{29}\)
hay \(5^{30}< 6\cdot5^{29}\)
Vậy \(5^{30}< 6\cdot5^{29}\).
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1+3^2+3^3+...+3^{29}\)
\(3A=1+\left(3^2+3^3+...+3^{29}\right).3\)
\(3A=1+3^3+3^4+...+3^{30}\)
\(3A-A=1+\left(3^3+3^4+...+3^{30}\right)-\)\(\left(3^2+3^3+...+3^{29}\right)\)
\(2A=1+3^{30}-1\)
\(\Rightarrow2A=3^{30}\)
\(\Rightarrow A=3^{30}:2\)
Vì\(3^{30}:2< 3^{30}\Rightarrow A< B\)
MK KHÔNG BIẾT ĐÚNG HAY SAI NHA !!!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{20^{10}+1}{20^{10}-1}=\frac{2^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Dễ thấy \(20^{10}-1>20^{10}-3\)
\(\Rightarrow\frac{1}{20^{10}-1}< \frac{1}{20^{10}-3}\)
\(\Rightarrow1+\frac{1}{20^{10}-1}< 1+\frac{1}{20^{10}-3}\)
\(\Rightarrow A< B\)
\(20-\left[30-\left(1-5\right)^2\right]\)
\(=20-\left[30-\left(-4^2\right)\right]\)
\(=20-4\)
\(=16\)
\(20-\left[30-\left(1-5\right)^2\right]\)
\(\Rightarrow20-\left[30-\left(-4\right)^2\right]\)
\(\Rightarrow20-\left(30-16\right)\)
\(\Rightarrow20-14\)
\(\Rightarrow6\)