Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{3n-2+6}{3n-2}=\frac{3n-2}{3n-2}+\frac{6}{3n-2}\)
\(\Rightarrow\)3n-2\(\in\) Ư(6)
3n-2=-1
3n=-1+2
3n=1 loại
3n-2=1
3n=1+2
3n=3
n=1 chọn
bạn tự làm tiếp nhé
a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)
\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)
\(\Rightarrow3n-9-3n+12⋮n-4\)
\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)
\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)
b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)
\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow6n+5-6n+3⋮2n-1\)
\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)
Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4
Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4
Mà 3. ( n - 4 ) chia hết cho n - 4
3 . ( n - 4 ) + 21 chia hết cho n - 4 <=> 21 chia hết cho n - 4
=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 }
n - 4 = 1 => n = 5
n - 4 = 3 => n = 7
n - 4 = 7 => n = 11
n - 4 = 21 => n = 25
Vậy n = { 5 ; 7 ; 11 ; 25 }
a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê
<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}
Bạn tự tính giá trị với mỗi n
b) Tương tự
a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên
\(\Rightarrow\)12\(⋮\)3n-1
\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!
b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên
\(\Rightarrow\)2n+3\(⋮\)7
\(\Rightarrow\)2n+3=7k
\(\Rightarrow n=\frac{7k-3}{2}\)
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
\(P=\frac{2n-5}{3n-2}\)
\(P=\frac{3\left(2n-5\right)}{2\left(3n-2\right)}\)
\(P=\frac{6n-5}{6n-2}\)
Suy ra -7 chia hết cho 3n - 2 hay 3n - 2 thuộc Ư(7)
Ta có Ư(7) = -1;-7;1;7
Do đó
3n - 2 = -1
3n = -1 + 2
3n = 1
n = 1 : 3
n = rỗng
3n - 2 = -7
3n = -7 + 2
3n = -5
n = -5 : 3
n = rỗng
3n - 2 = 1
3n = 1 + 2
3n = 3
n = 3 : 3
n = 1
3n - 2 = 7
3n = 7 + 2
3n = 9
n = 9 : 3
n = 3
Mà n có giá trj là số nguyên nên n = 1;3
Nếu đúng thì tk nha
\(\frac{2n-1}{3n-4}\)
=\(\frac{\left(5-3\right)n-\left(5-4\right)n}{3n-4}\)
= \(\frac{5-3n-5n-4}{3n-4}\)
=\(\frac{5}{3n-4}-\frac{3n-4}{3n-4}\)
\(\Rightarrow\)3n - 4 thuộc Ư(5)
Ta có: Ư(5) = { -1;-5;1;5}
Do đó:
3n - 4 = -1
3n = -1 + 4
3n = 3
n = 3 : 3
n = 1
3n - 4 = -5
3n = -5 + 4
3n = -1
n = -1 : 3
n = rỗng
3n - 4 = 1
3n = 1 + 4
3n = 5
n = 5 : 3
n = rỗng
3n - 4 = 5
3n = 5 + 4
3n = 9
n = 9 : 3
n = 3
Vậy n = 1;3
Để \(\frac{2n-1}{3n-4}\)nguyên thì \(2n-1⋮3n-4\)
\(\Leftrightarrow3\left(2n-1\right)⋮3n-4\)
\(\Leftrightarrow6n-3⋮3n-4\)
\(\Leftrightarrow6n-8+5⋮3n-4\)
\(\Leftrightarrow5⋮3n-4\)
\(\Rightarrow3n-4\inƯ\left(5\right)\)
Vậy ta có bảng sau: