Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé
a) Xét \(\Delta ABD\)và \(\Delta BDC\)có \(\widehat{BAD}=\widehat{CBD}\left(=90\right);\widehat{ADB}=\widehat{BCD}\)(cùng phụ với \(\widehat{BDC}\))
\(\Rightarrow\Delta ABD\infty\Delta BDC\left(g.g\right)\)
b) Áp dụng định lý pytago vào \(\Delta ABD\)có \(BD^2=AB^2+AD^2=16+9=25\Rightarrow BD=5\)
từ \(\Delta ABD\infty\Delta BDC\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow DC=\frac{BD^2}{AB}=\frac{25}{4}\)
a) Vì tứ giác ABCD là hình thang vuông
=> AB song song CD
=> góc ABD = góc BDC
Xét tam giác ABD và tam giác BDC có:
góc BAD = góc CBD (=90*)
Góc ABD = Góc BDC ( cmt)
=> tam giác ABD đồng dạng tam giác BDC (g.g)
b) Vì tam giác ABD vuông tại A nên theo ĐL Py-ta-go ta có:
BD2 = AB2 + AD2
=> BD2 = 42 + 32
=> BD2 = 25
=> BD = 5 (cm)
Vì tam giác ABD đồng dạng tam giác BDC ( cm ý a)
=> AB/BD = BD/DC ( 2 cặp cạnh tương ứng)
=> 4/5 = 5/DC
=> DC = 6,25
c) Kẻ \(AH\perp BD\).
Dẽ thấy: \(\frac{S_{ADE}}{S_{ABD}}=\frac{\frac{AH.DE}{2}}{\frac{AH.BD}{2}}=\frac{DE}{BD}\).
Vì \(AB//CD\)( do hình thang ABCD vuông tại A và D).
Và E là giao điểm của AC và BD.
\(\Rightarrow\frac{DE}{BE}=\frac{CD}{AB}\)(hệ quả của dịnh lí Ta-lét).
\(\Rightarrow\frac{DE}{BE}=\frac{6,25}{4}=\frac{25}{16}\)(thay số).
\(\Rightarrow\frac{DE}{BE+DE}=\frac{25}{16+25}\)(tính chất của tỉ lệ thức).
\(\Rightarrow\frac{DE}{BD}=\frac{25}{41}\).
Do đó \(\frac{S_{ADE}}{S_{ABD}}=\frac{25}{41}\).
\(\Rightarrow S_{ADE}=\frac{25.S_{ABD}}{41}=\frac{25.\frac{AB.AD}{2}}{41}=\frac{25.\frac{4.3}{2}}{41}\).
\(\Rightarrow S_{ADE}=\frac{25.6}{41}=\frac{150}{41}\left(cm^2\right)\).
vậy \(S_{ADE}=\frac{150}{41}cm^2\).
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
Do đo: ΔBDC\(\sim\)ΔHBC
b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(HC=\dfrac{BC^2}{CD}=\dfrac{6^2}{10}=3.6\left(cm\right)\)
HD=10-3,6=6,4(cm)
cứu em
I