\(^{2^{ }+2^2+2^3+...2^{10}}\)

chứng tỏ rằng

a) A chia hết 3

b) A chia...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

a. (2+2^2)+(2^3+2^4)+.....+(2^9+2^10) = 2(1+2)+2^3(1+2)+........+2^9(1+2) = (1+2)(2+2^3+.........+2^9) = 3(2+2^3+.........+2^9) chia hết cho 3

21 tháng 1 2021

                                                                          lg

a)C=3+3^2+3^3+...+3^100

=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)

=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)

=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)

=3.40+...+3^96.40

=40.(3+...+3^96) chia hết cho 40

=>C chia hết cho 40

Vậy C chia hết cho 40

phần b làm tương tự

5 tháng 2 2021

a, sai đề 

b,Ta có :

C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100

   = (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)

  = (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)

  =2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)

  =2.31+...+2^96.31

  =31. (2+...+2^96) chia hết cho 31

=>C chia hết cho 31

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

24 tháng 10 2016

a) tổng S bằng

(2014+4).671:2=677 039

b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n

→2n.(n+2013)\(⋮̸\)2

C)M=2+22+23+...+220

=(2+22+23+24)+...+(217+218+219+220)

=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)

=30.1+...+216.(2+22+23+24)

=30.1+...+216.30

=30(1+25+29+213+216)\(⋮\)5

 

 

23 tháng 10 2016

c, M= 2 + 22 + 23 +........220

Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5

Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)

= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )

= 30+24 .30 + 28. 30 +.........+ 216.30

= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5

Vậy M chia hết cho 5

21 tháng 8 2018

Chúng tỏ rằng : 

a) M = 4^10 - 2^18 chia hết cho 3 

M = 4^10 - 2^18 

M = ( 2^2 )^10 - 2^18 

M = 2^20 - 2^18 

M = 2^18 . 2^2 - 2^18 . 1 

M = 2^18 . 4 - 2^18 . 1 

M = 2^18 . ( 4 - 1 ) 

M = 2^18 . 3 chia hết cho 3 

Vậy M chia hết cho 3 

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

26 tháng 10 2016

câu a tớ ko trả lời vì nó có trong violympic

26 tháng 10 2016

a, C = 2 + 2 2 + 2 3 + ... + 2 99 + 2 100

 2 C = 2 2 + 2 3 + 2 4 + ... + 2 100 + 2 101

2C - C = ( 2 2 + 2 3 + 2 4 + ... + 2 100 + 2 101 )

           -  ( 2 + 2 2 + 2 3 + ... + 2 99 + 2 100 )

C         = 2 101 - 2

b , 2 2x - 1  - 2 = C

      2 2x - 1  - 2 = 2 101 - 2

=> 2 2x - 1   = 2 101

=> 2x - 1 = 101

     2x      = 101 + 1

     2x      = 102

       x      = 51

c ) C = 2 + 2 2 + 2 3 + ... + 2 99 + 2 100

     C = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) + .... + ( 2 96 + 2 97 + 2 98 + 2 99 + 2 100 )

     C = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) + .... + ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) . 2 95

     C = 31 + ..... + 31 . 2 95

     C = 31 ( 1 + ... + 2 95 )

Vì 31 chia hết cho 31

=> C = 31 ( 1 + ... + 2 95 ) chia hết cho 31

Vậy C chia hết cho 31