Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2022.2023}\)
\(B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\)
\(B=\dfrac{1}{2}-\dfrac{1}{2023}=\dfrac{2021}{4046}\)
Đặt A=1x2+2x3+3x4+.......+1999x2000
3xA=1x2x3+2x3x3+3x4x3+...........+1999x2000x3
3xA=1x2x3+2x3x(4-1)+............+1999x2000x(2001-1998)
3xA=1x2x3+2x3x4-1x2x3+...........+1999x2000x2001-1998x1999x2000
3xA=1999x2000x2001
A=1999x2000x2001:3
A=2666666000
Đặt S = 1x2+2x3+3x4+...+98x99+99x100
S x 3 =1x2x3+2x3x3+3x4x3+...+98x99x3+99x100x3
S x 3 =1x2x(3-0)+2x3x(4-1)+3x4x(5-2)+....+98x99x(100-97)+99x100x(101-98)
S x 3 = 1x2x3 + 2x3x4-1x2x3+3x4x5-2x3x4+...+98x99x100-97x98x99+99x100x101-98x99x100
S x 3 = 99x100x101
S x 3 = 999900
S = 333300
\(A=1.2+2.3+...+25.26\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+25.26.\left(27-24\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+25.26.27-24.25.26\)
\(\Rightarrow3A=25.26.27\)
\(\Rightarrow A=25.26.9\)
Đặt A = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
=> 3A = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 99.100.101 - 98.99.100
=> 3A = 99.100.101
=> A = 99.100.101 : 3
=> A = 333300
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
sai một chỗ
\(A=1.2+2.3+3.4+...+18.19\)
\(\Leftrightarrow3A=1.2.3+2.3.3+3.4.3+...+18.19.3\)
\(\Leftrightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+18.19.\left(20-17\right)\)
\(\Leftrightarrow3A=1.2.3+2.3.4-1.2.3+...+18.19.20-17.18.19\)
\(\Leftrightarrow3A=18.19.20\)
\(\Leftrightarrow A=6.19.20\)
\(\dfrac{1\times2+2\times3+3\times4+...+2022\times2023}{2022\times2023\times2024}=A\)
\(3A=\dfrac{1\times2\times3+2\times3\times3+3\times4\times3+...+2022\times2023\times3}{2022\times2023\times2024}\)
\(3A=\dfrac{1\times2\times\left(3-0\right)+2\times3\times\left(4-1\right)+3\times4\times\left(5-2\right)+...+2022\times2023\times\left(2024-2021\right)}{2022\times2023\times2024}\)
\(3A=\dfrac{1\times2\times3+2\times3\times4-2\times3\times1+...+2022\times2023\times2024-2022\times2023\times2021}{2022\times2023\times2024}\)
\(3A=\dfrac{2022\times2023\times2024}{2022\times2023\times2024}\)
\(3A=1\)
\(\Rightarrow A=1\div3\)
Vậy \(A=\dfrac{1}{3}\)
2xy - 4x - y = 3
2xy - 2x2 - y = 3
2x (y - 2) - y = 3
2x (y - 2) - (y - 2) = 3 + 2
(2x - 1) (y - 2) = 5
Ta có: 5 = 1 x 5 = (-1) x (-5)
Ta lập bảng:
Vậy (x; y) ϵ {(1; 7); (3; 3); (0; -3); (-2; 1)}