
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(4.\left(x-1\right)^2-9=0\)
\(\Rightarrow4.\left(x-1\right)^2=9\)
\(\Rightarrow\left(x-1\right)^2=9:4=\dfrac{9}{4}=\left(\pm\dfrac{3}{2}\right)^2\)
\(\Rightarrow x-1=\pm\dfrac{3}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{3}{2}\\x-1=\dfrac{-3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
vậy\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
b) \(\dfrac{1}{4}-9.\left(x-1\right)^2=0\)
\(\Rightarrow9.\left(x-1\right)^2=\dfrac{1}{4}\)
\(\Rightarrow\left(x-1^2\right)=\dfrac{1}{36}=(\pm\dfrac{1}{6})^2\)
\(\Rightarrow x-1=\pm\dfrac{1}{6}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{6}\\x-1=\dfrac{-1}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{5}{6}\end{matrix}\right.\)
vậy \(\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{5}{6}\end{matrix}\right.\)
e) \(\dfrac{1}{16}-\left(2x+\dfrac{3}{4}\right)^2=0\)
\(\Rightarrow\left(2x+\dfrac{3}{4}\right)^2=\dfrac{1}{16}=\left(\pm\dfrac{1}{4}\right)^2\)
\(\Rightarrow2x+\dfrac{3}{4}=\pm\dfrac{1}{4}\)
\(\Rightarrow\)\(\left[{}\begin{matrix}2x+\dfrac{3}{4}=\dfrac{1}{4}\\2x+\dfrac{3}{4}=\dfrac{-1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
vậy \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

\(9x^2-1=\left(3x+1\right)\cdot\left(2x-3\right)\\ \Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\cdot\left(2x-3\right)=0 \\ \Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\\\Leftrightarrow \left(3x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-2\end{matrix}\right.\\ \)
1. \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{-1}{3};-2\right\}\)
2. \(\left(2x-1\right)^2=49\)
\(\Leftrightarrow\left(2x-1\right)^2-7^2=0\)
\(\Leftrightarrow\left(2x-1-7\right)\left(2x-1+7\right)=0\)
\(\Leftrightarrow\left(2x-8\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-8=0\\2x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=8\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{4;-3\right\}\)
3. \(\left(5x-3\right)^2-\left(4x-7\right)^2=0\)
\(\Leftrightarrow\left(5x-3-4x+7\right)\left(5x-3+4x-7\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(9x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\9x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{10}{9}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{-4;\dfrac{10}{9}\right\}\)
4. \(\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(\Leftrightarrow4x^2+28x+49=9\left(x^2+4x+4\right)\)
\(\Leftrightarrow4x^2+28x+49=9x^2+36x+36\)
\(\Leftrightarrow\left(4x^2-9x^2\right)+\left(28x-36x\right)=36-49\)
\(\Leftrightarrow-5x^2-8x=-13\)
\(\Leftrightarrow-5x^2-8x+13=0\)
\(\Leftrightarrow-5x^2+5x-13x+13=0\)
\(\Leftrightarrow-5x\left(x-1\right)-13\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\5x+13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-13}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{1;\dfrac{-13}{5}\right\}\)

Mk xin lỗi nha, câu c sai đề
c) (x+6)4 + (x+8)4 = 272

\(a,x^2-5x\)
\(=x\left(x-5\right)\)
\(b,5x\left(x+5\right)+4x+20\)
\(=5x\left(x+5\right)+4\left(x+5\right)\)
\(=\left(5x+4\right)\left(x+5\right)\)
\(c,7x\left(2x-1\right)-4x+2\)
\(=7x\left(2x-1\right)-2\left(2x-1\right)\)
\(=\left(7x-2\right)-\left(2x-1\right)\)
\(d,x^2-16+2\left(x+4\right)\)
\(=x^2-16+2x+8\)
\(=x\left(x-2\right)-8\) ( Ý này thì k chắc lắm, sai thông cảm :)) )
\(e,x^2-10x+9\)
\(=x^2-x-9x+9\)
\(=x\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x-9\right)\left(x-1\right)\)
\(f,\left(2x-1\right)^2-\left(x-3\right)^2=0\) ( mk đoán bài này là tìm x, sai thì bảo mk để mk sửa nhé )
\(\Rightarrow\left(2x-1\right)^2=\left(x-3\right)^2\)
\(\Leftrightarrow\pm\left(2x-1\right)=\pm\left(x-3\right)\)
\(\Rightarrow\hept{\begin{cases}2x-1=x-3\\-\left(2x-1\right)=-\left(x-3\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-1-x+3=0\\-2x+1-x+3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+2=0\\-3x+4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\left(-2\right)\\x=\frac{4}{3}\end{cases}}\)
Vậy ...

\( \dfrac{1}{9}{\left( {x - 3} \right)^2} - \dfrac{1}{{25}}{\left( {x + 5} \right)^2} = 0\\ \Leftrightarrow 25{\left( {x - 3} \right)^2} - 9{\left( {x + 5} \right)^2} = 0\\ \Leftrightarrow \left[ {5\left( {x - 3} \right) - 3\left( {x + 5} \right)} \right]\left[ {5\left( {x - 3} \right) + 3\left( {x + 5} \right)} \right] = 0\\ \Leftrightarrow \left( {5x - 15 - 3x - 15} \right)\left( {5x - 15 + 3x + 15} \right) = 0\\ \Leftrightarrow \left( {2x - 30} \right).8x = 0\\ \Leftrightarrow 2\left( {x - 15} \right).8x = 0\\ \Leftrightarrow x\left( {x - 15} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x - 15 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 15 \end{array} \right. \)
\( {\left( {\dfrac{{3x}}{5} - \dfrac{1}{3}} \right)^2} = {\left( {\dfrac{x}{5} + \dfrac{2}{3}} \right)^2}\\ \Leftrightarrow \left| {\dfrac{{3x}}{5} - \dfrac{1}{3}} \right| = \left| {\dfrac{x}{5} + \dfrac{2}{3}} \right|\\ \Leftrightarrow \left[ \begin{array}{l} \dfrac{{3x}}{5} - \dfrac{1}{3} = \dfrac{x}{5} + \dfrac{2}{3}\\ \dfrac{{3x}}{5} - \dfrac{1}{3} = - \left( {\dfrac{x}{5} + \dfrac{2}{3}} \right) \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} \dfrac{{2x}}{5} = 1\\ \dfrac{{4x}}{5} = - \dfrac{1}{3} \end{array} \right. \Rightarrow \left[ \begin{array}{l} x = \dfrac{5}{2}\\ x = - \dfrac{5}{{12}} \end{array} \right. \)

a) (x + 5)2 - (x - 3)2 = 2x - 7
(x + 5 - x + 3)(x + 5 + x - 3) = 2x - 7
8(2x + 2)= 2x - 7
16x + 16 = 2x - 7
16x - 2x = - 7 - 16
14x = - 23
x = - 23/14
b) (2x - 3)(4x2 + 6x + 9) = 98
(2x)3 - 33 = 98
8x3 - 27 = 98
8x3 = 125
x3 = 125/8
x3 = (5/2)3
x = 5/2

a)(x+1)(x2+2x)=(x+1)x(x+2)=0
\(=>\left\{{}\begin{matrix}x+1=0=>x=-1\\x=0\\x+2=0=>x=-2\end{matrix}\right.\)
b)x(3x-2)-5(2-3x)=x(3x-2)+5(3x-2)=(3x-2)(x+5)=0
\(=>\left\{{}\begin{matrix}3x-2=0=>x=\dfrac{2}{3}\\x+5=0=>x=-5\end{matrix}\right.\)
c)\(\dfrac{4}{9}-25x^2=\left(\dfrac{2}{3}\right)^2-\left(5x\right)^2=\left(\dfrac{2}{3}-5x\right)\left(\dfrac{2}{3}+5x\right)\)
=0
\(=>\left\{{}\begin{matrix}\dfrac{2}{3}-5x=0=>x=\dfrac{2}{15}\\\dfrac{2}{3}+5x=0=>x=\dfrac{-2}{15}\end{matrix}\right.\)
d)\(x^2-x+\dfrac{1}{4}=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2=0\)
\(=>x-\dfrac{1}{2}=0=>x=\dfrac{1}{2}\)