Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )
b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)
=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)
Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1
a,(3/5+0,415-3/200).\(2\dfrac{2}{3}\).0,25
=(0,6+0.415-3/200)8/3.1/4
=(1,015-3/200).8/3.1/4
=(1015/1000-3/200).2/3
=(203/200-3/200).2/3
=1.2/3=2/3
b,0,25:(10,3-9,8)-3/4
=0,25:910,3-9,8)-0.75
=0,25:0,5-0,75
=-0,25
Mình làm từng đó trước,lần sau mình sẽ lm típ nha!
Mình tick đúng nhưng bạn cần đọc rõ đề Tính theo cách hợp lý nhất
b, B = 1 + 2 + 2^2 + 2^3 +.....+ 2^2013
2B = 2.(1 + 2 + 2^2 + 2^3 +.....+ 2^2013)
2B = 2 + 2^2 + 2^3 + 2^4 +.....+ 2^2014
2B - B = 2^2014 - 1
B = 2^2014 - 1
1.Tính hợp lý:
a. 1152 - (374 + 1152) + (374 - 65) = 1152 - 374 - 1152 + 374 - 65 = ( 1152 - 1152 ) + ( -65) + ( 374 - 374 ) = 0 + ( - 65) + 0 = -65
Bài 1 : Tính hợp lý : c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\) = \(\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\) = \(\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\) = \(\dfrac{3^{29}.2^3}{2^2.3^{28}}\) = 6
a) \(1\dfrac{13}{15}.\left(-5\right)^2.3+\left(\dfrac{8}{15}-\dfrac{19}{60}\right):1\dfrac{23}{24}\)
\(=\dfrac{28}{15}.25.3+\dfrac{13}{60}.\dfrac{24}{47}\)
\(=140+\dfrac{26}{235}=140\dfrac{26}{235}\)
b) \(\dfrac{\left(\dfrac{11^2}{200}+0,414:0,01\right)}{\dfrac{1}{12}-37.25+3\dfrac{1}{6}}\)
\(=\dfrac{\left(\dfrac{121}{200}-41,4\right)}{\dfrac{1}{12}-92519+\dfrac{19}{6}}\)
\(=\dfrac{2\dfrac{191}{207}}{-9251575}\)
Câu 2:
a: \(\Leftrightarrow12x-60=7x-5\)
=>5x=55
=>x=11
b: \(\Leftrightarrow\left(2x-3\right)^{2010}\left[\left(2x-3\right)^2-1\right]=0\)
=>(2x-3)(2x-2)(2x-4)=0
hay \(x\in\left\{\dfrac{3}{2};1;2\right\}\)
Dấu " / " là phân số nhé
a) 5/-4 . 16/25 + -5/4 . 9/25
= -5/4 . 16/25 + -5/4 . 9/25
= -5/4 . ( 16/25 + 9/25 )
= -5/4 . 1
= -5/4
b) 4 11/23 - 9/14 + 2 12/23 - 5/4
= 103/23 - 9/14 + 58/23 - 5/4
= 103/23 + 58/23 - 9/14 - 5/4
= 7 - 9/14 - 5/4
= 143/28
c) 2 13/27 - 7/15 + 3 14/27 - 8/15
= 67/27 - 7/15 + 95/27 - 8/15
= 67/27 + 95/27 - 7/15 - 8/15
= 6 - 7/15 - 8/15
= 5
3.
\(A=1-3+3^2-3^3+...-3^{2009}-3^{2010}\)
\(\Rightarrow3A=3-3^2+3^3-3^4+...-3^{2010}+3^{2011}\)
\(\Rightarrow4A=3-3^2+3^3-3^4+...-3^{2010}+3^{2011}+\left(1-3+3^2-3^3+...-3^{2009}+3^{2010}\right)\)\(\Rightarrow4A=3^{2011}-1\)
\(\Rightarrow4A=3^{2011}\)
\(\Rightarrow\)ĐPCM
mik đg cần gấp câu 1 và câu 2 câu 3 mik lm đk r mơn bn nhé nhưng bn có thể giúp mik câu 1 và câu 2 k?