Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) với mọi a,b,c ϵ R và x,y,z ≥ 0 có :
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(1\right)\)
Dấu ''='' xảy ra ⇔\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Thật vậy với a,b∈ R và x,y ≥ 0 ta có:
\(\frac{a^2}{x}=\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\left(2\right)\)
⇔\(\frac{a^2y}{xy}+\frac{b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
⇔\(\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
⇔\(\frac{a^2y+b^2x}{xy}.\left(x+y\right)xy\ge\frac{\left(a+b\right)^2}{x+y}.\left(x+y\right)xy\)
⇔\(\left(a^2y+b^2x\right)\left(x+y\right)\ge\left(a+b\right)^2xy\)
⇔\(a^2xy+b^2x^2+a^2y^2+b^2xy\ge a^2xy+2abxy+b^2xy\)
⇔\(b^2x^2+a^2y^2-2abxy\ge0\)
⇔\(\left(bx-ay\right)^2\ge0\)(luôn đúng )
Áp dụng BĐT (2) có:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
Dấu ''='' xảy ra ⇔\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Ta có:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}
\)
= \(\frac{1}{a^2}.\frac{1}{ab+ac}+\frac{1}{b^2}.\frac{1}{bc+ac}+\frac{1}{c^2}.\frac{1}{ac+bc}\)
=\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\)
Áp dụng BĐT (1) ta có:
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}++\frac{1}{c}\right)^2}{2\left(ab+bc+ac\right)}\)
Mà abc=1⇒\(\left\{{}\begin{matrix}ab=\frac{1}{c}\\bc=\frac{1}{a}\\ac=\frac{1}{b}\end{matrix}\right.\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)
\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=3\sqrt[3]{\frac{1}{1}}=3\)( BĐT cosi )
⇒\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
⇒\(\frac{\frac{1}{a^2}}{ab+ac}+\frac{\frac{1}{b^2}}{bc+ac}+\frac{\frac{1}{c^2}}{ac+bc}\ge\frac{1}{2}.3=\frac{3}{2}\)
Vậy \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Chúc bạn học tốt !!!
c, ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x-3\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
- Ta có : \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)
=> \(\frac{12\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\frac{8\left(x-1\right)}{2\left(x-3\right)\left(x-1\right)}=\frac{8\left(x-1\right)}{2\left(x-3\right)\left(x-1\right)}\)
=> \(12\left(x-3\right)-8\left(x-1\right)=8\left(x-1\right)\)
=> \(12x-36-8x+8-8x+8=0\)
=> \(-4x-20=0\)
=> \(x=-5\) ( TM )
Vậy phương trình trên có tập nghiệm là \(S=\left\{-5\right\}\)
b, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\2x-3\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne0\\x\ne\frac{3}{2}\end{matrix}\right.\)
Ta có : \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
=> \(\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)
=> \(x-3=5\left(2x-3\right)\)
=> \(x-3-10x+15=0\)
=> \(-9x=-12\)
=> \(x=\frac{4}{3}\) ( TM )
Vậy phương trình trên có nghiệm là \(S=\left\{\frac{4}{3}\right\}\)
\(a,\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow\frac{2-x}{\left(x+1\right)\left(2-x\right)}+\frac{5x+5}{\left(2-x\right)\left(x+1\right)}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Leftrightarrow2-x+5x+5=15\)
\(\Leftrightarrow7+4x=15\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
\(\Leftrightarrow Ptvn\)
\(b,\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne0\\x\ne\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{10x-15}{x\left(2x-3\right)}\)
\(\Leftrightarrow x-3=10x-15\)
\(\Leftrightarrow x-3-10x+15=0\)
\(\Leftrightarrow-9x+12=0\)
\(\Leftrightarrow-9x=-12\)
\(\Leftrightarrow\frac{4}{3}\)
\(c,\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
\(\Leftrightarrow\frac{6x-18}{\left(x-1\right)\left(x-3\right)}-\frac{4x-4}{\left(x-1\right)\left(x-3\right)}=\frac{4x-4}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow6x-18-4x+4=4x-4\)
\(\Leftrightarrow2x-14=4x-4\)
\(\Leftrightarrow-2x=10\)
\(\Leftrightarrow x=-5\)
\(d,\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne3\end{matrix}\right.\)
\(\Leftrightarrow\frac{3x-9}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{2x-4}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{x-1}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow3x-9+2x-4=x-1\)
\(\Leftrightarrow4x-12=0\)
\(\Leftrightarrow4x=12\)
\(\Leftrightarrow x=3\)
\(\Leftrightarrow Ptvn\)
Vậy .................................
\(a)\dfrac{{x + 1}}{{x - 2}} - \dfrac{{x - 1}}{{x + 2}} = \dfrac{{2\left( {{x^2} + 2} \right)}}{{{x^2} - 4}}\)
ĐKXĐ: \(x\ne\pm2\)
\(\Leftrightarrow \dfrac{{\left( {x + 1} \right)\left( {x + 2} \right) - \left( {x - 1} \right)\left( {x - 2} \right)}}{{{x^2} - 4}} = \dfrac{{2\left( {{x^2} + 2} \right)}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} + 3x + 2 - \left( {{x^2} - 3x + 2} \right) = 2{x^2} + 4\\ \Leftrightarrow 6x = 2{x^2} + 4\\ \Leftrightarrow - 2{x^2} + 6x - 4 = 0\\ \Leftrightarrow 2{x^2} - 6x + 4 = 0\\ \Leftrightarrow {x^2} - 3x + 2 = 0\\ \Leftrightarrow {x^2} - 2x - x + 2 = 0\\ \Leftrightarrow x\left( {x - 2} \right) - \left( {x - 2} \right) = 0\\ \Leftrightarrow \left( {x - 2} \right)\left( {x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ x - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\left( {KTM} \right)\\ x = 1\left( {TM} \right) \end{array} \right. \)
Vậy \(x=1\)
\(b)\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}} \)
ĐKXĐ: \(x\ne\pm2\)
\( \Leftrightarrow \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right) - x\left( {x + 2} \right)}}{{{x^2} - 4}} = \dfrac{{2 - 5x}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} - 3x + 2 - {x^2} - 2x = 2 - 5x\\ \Leftrightarrow 0x = 0\left( {VSN} \right) \)
Vậy phương trình vô số nghiệm
\(c)\dfrac{{x - 2}}{{2 + x}} - \dfrac{3}{{x - 2}} = \dfrac{{2\left( {x - 11} \right)}}{{{x^2} - 4}}\)
ĐKXĐ: \(x\ne\pm2\)
\( \Leftrightarrow \dfrac{{\left( {x - 2} \right)\left( {x - 2} \right) - 3\left( {x + 2} \right)}}{{{x^2} - 4}} = \dfrac{{2x - 22}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} - 4x + 4 - 3x - 6 = 2x - 22\\ \Leftrightarrow {x^2} - 9x + 20 = 0\\ \Leftrightarrow {x^2} - 4x - 5x + 20 = 0\\ \Leftrightarrow x\left( {x - 4} \right) - 5\left( {x - 4} \right) = 0\\ \Leftrightarrow \left( {x - 4} \right)\left( {x - 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 4 = 0\\ x - 5 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 4\left( {TM} \right)\\ x = 5\left( {TM} \right) \end{array} \right. \)
Vậy \(x=4,x=5\)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
Bài 1:
\(\frac{ab}{(a-c)(b-c)}+\frac{bc}{(b-a)(c-a)}+\frac{ca}{(c-b)(a-b)}=\frac{-ab}{(c-a)(b-c)}+\frac{-bc}{(a-b)(c-a)}+\frac{-ca}{(b-c)(a-b)}\)
\(=\frac{-ab(a-b)}{(a-b)(b-c)(c-a)}+\frac{-bc(b-c)}{(a-b)(b-c)(c-a)}+\frac{-ca(c-a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{-ab(a-b)-bc(b-c)-ca(c-a)}{(a-b)(b-c)(c-a)}=\frac{-(a^2b+b^2c+c^2a)+(ab^2+bc^2+ca^2)}{-(a^2b+b^2c+c^2a)+(ab^2+bc^2+ca^2)}=1\)
Bài 2:
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow \frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\)
\(\Leftrightarrow (a+b).\frac{c(a+b+c)+ab}{abc(a+b+c)}=0\)
\(\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\Rightarrow (a+b)(b+c)(c+a)=0\)
\(\Rightarrow \left[\begin{matrix} a+b=0\\ b+c=0\\ c+a=0\end{matrix}\right.\)
Không mất tổng quát giả sử $a+b=0$
Khi đó:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3}+\frac{1}{(-a)^3}+\frac{1}{c^3}=\frac{1}{c^3}(1)\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{a^3+(-a)^3+c^3}=\frac{1}{c^3}(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3+b^3+c^3}\) (đpcm)