Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 3-2|4x-5|=2/6
=>2|4x-5|=3-1/3=8/3
=>|4x-5|=4/3
=>4x-5=4/3 hoặc 4x-5=-4/3
=>4x=19/3 hoặc 4x=11/3
=>x=19/12 hoặc x=11/12
c: (7-3x)(2x+1)=0
=>2x+1=0 hoặc -3x+7=0
=>x=-1/2 hoặc x=-7/3
d: 2x(5-3x)>0
=>x(3x-5)<0
=>0<x<5/3
a) * Nếu 4x - 5 \(\ge\) 0 thì x \(\ge\) \(\dfrac{5}{4}\)
\(\Leftrightarrow\) \(3-2\left(4x-5\right)=\dfrac{2}{6}\)
\(\Leftrightarrow\) \(-8x=-3-10+\dfrac{2}{6}\)
\(\Leftrightarrow\) x = \(\dfrac{19}{12}\) (t/m)
* Nếu 4x - 5 < 0 thì x < \(\dfrac{5}{4}\)
\(\Leftrightarrow\) \(3-2\left(-4x+5\right)=\dfrac{2}{6}\)
\(\Leftrightarrow\) \(3+8x-10=\dfrac{2}{6}\)
\(\Leftrightarrow\) x = \(\dfrac{11}{12}\) (t/m)
b) Không hiểu đề :v
c) \(\left(7-3x\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7-3x=0\\2x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d) \(2x\left(5-3x\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}2x>0\\5-3x>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow0< x< \dfrac{5}{3}\)
e) \(\left(4-2x\right)\left(5x+3\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4-2x< 0\\5x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4-2x>0\\5x+3< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x< -\dfrac{3}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x>-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)
Loại TH1, nhận TH2
Vậy \(-\dfrac{3}{5}< x< 2\)
g) \(\left|3x+1\right|+\left|1-3x\right|=0\) (1)
* Nếu x < \(\dfrac{-1}{3}\)
PT (1) \(\Leftrightarrow-3x-1-1+3x=0\)
0x - 2 = 0
0x = 2 \(\Rightarrow\) PT vô nghiệm
* Nếu \(\dfrac{-1}{3}\le x\le\dfrac{1}{3}\)
PT (1) \(\Leftrightarrow3x+1-1+3x=0\)
6x = 0
x = 0 (t/m)
* Nếu x > \(\dfrac{1}{3}\)
PT (1) \(\Leftrightarrow3x+1+1-3x=0\)
0x + 2 = 0
0x = -2
PT vô nghiệm.
Vậy x = 0
a, \(3-2\left|4x-5\right|=\dfrac{2}{6}\)
\(\Rightarrow2\left|4x-5\right|=\dfrac{8}{3}\)
\(\Rightarrow\left|4x-5\right|=\dfrac{4}{3}\)
+) Xét \(x\ge\dfrac{5}{4}\) có:
\(4x-5=\dfrac{4}{3}\Rightarrow4x=\dfrac{19}{3}\Rightarrow x=\dfrac{19}{12}\) ( t/m )
+) Xét \(x< \dfrac{5}{4}\) có:
\(4x-5=\dfrac{-4}{3}\Rightarrow4x=\dfrac{11}{3}\Rightarrow x=\dfrac{11}{12}\) ( t/m )
Vậy...
b, tương tự
c, \(\left(7-3x\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7-3x=0\\2x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy...
d, \(2x\left(5-3x\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}2x>0\\5-3x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}2x< 0\\5-3x< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{3}{5}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x>\dfrac{3}{5}\end{matrix}\right.\) (loại )
Vậy \(0< x< \dfrac{3}{5}\)
e, tương tự
g, \(\left|3x+1\right|+\left|1-3x\right|=0\)
\(\Rightarrow\left|3x+1\right|+\left|3x-1\right|=0\)
+) Xét \(x\ge\dfrac{1}{3}\) có:
\(3x+1+3x-1=0\)
\(\Rightarrow6x=0\)
\(\Rightarrow x=0\) ( ko t/m )
+) Xét \(\dfrac{-1}{3}\le x< \dfrac{1}{3}\) có:
\(3x+1+1-3x=0\)
\(\Rightarrow2=0\) ( vô lí )
+) Xét \(x< \dfrac{-1}{3}\) có:
\(-3x-1+1-3x=0\)
\(\Rightarrow-6x=0\Rightarrow x=0\) ( ko t/m )
Vậy ko có giá trị x thỏa mãn đề bài
a: Ta có: \(\left(x-\dfrac{2}{5}\right)\left(x+\dfrac{2}{7}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{2}{5}\\x< -\dfrac{2}{7}\end{matrix}\right.\)
a: \(\left|3x-2\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=4\\3x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b: Ta có: \(\left|5x-3\right|=\left|x-7\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=x-7\\5x-3=7-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-4\\6x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{3}\end{matrix}\right.\)
Lời giải:
a.
PT $\Leftrightarrow -5x^2+15x-5+x+5x^2=x-2$
$\Leftrightarrow 16x-5=x-2$
$\Leftrightarrow 15x=3$
$\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}$
b.
PT $\Leftrightarrow -4x^2+20x+7x^2-28x-3x^2=12$
$\Leftrightarrow -8x=12$
$\Leftrightarrow x=\frac{-3}{2}$
a, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=10\end{matrix}\right.\\ b,x:2=y:\left(-5\right)\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)
`#3107.101107`
`1.`
`a,`
`(2x - 3)^2 = |3 - 2x|`
`=> (2x - 3)^2 = |2x - 3|`
`=>`\(\left[{}\begin{matrix}2x-3=\left(2x-3\right)^2\\2x-3=-\left(2x-3\right)^2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x-3-\left(2x-3\right)^2=0\\2x-3+\left(2x-3\right)^2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}\left(2x-3\right)\left(1-2x+3\right)=0\\\left(2x-3\right)\left(1+2x-3\right)=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x-3=0\\4-2x=0\\2x-2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=1\end{matrix}\right.\)
Vậy, `x \in {3/2; 2; 1}`
`b,`
`(x - 1)^2 + (2x - 1)^2 = 0`
`=>`\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(2x-1\right)^2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x \in {1; 1/2}`
`c,`
`5 - x^2 = 1`
`=> x^2 = 4`
`=> x^2 = (+-2)^2`
`=> x = +-2`
Vậy, `x \in {-2; 2}`
`d,`
`x - 2\sqrt{x} = 0`
`=> x^2 - (2\sqrt{x})^2 = 0`
`=> x^2 - 4x = 0`
`=> x(x - 4) = 0`
`=>`\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy, `x \in {0; 4}`
`g,`
`(x - 1) + 1/7 = 0`
`=> x - 1 + 1/7 = 0`
`=> x - 6/7 = 0`
`=> x = 6/7`
Vậy, `x = 6/7.`
=> 3x+1/3 = 0 hoặc x-1/2 = 0
=> x=-1/9 hoặc x=1/2
Vậy x=-1/9 hoặc x=1/2
k mk nha
\(\left(\frac{3x+1}{3}\right).\left(\frac{x-1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{3x+1}{3}=0\\\frac{x-1}{2}=0\end{cases}\Rightarrow\orbr{\begin{cases}3x+1=0\\x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=1\end{cases}}}\)