K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

b)  (2x-6)(x+4)=0

c)  (x-3)(x+4)<0

d)  (x+2)(X-5)>0

21 tháng 7 2021

bạn đăg tách ra cho m.n cùng giúp nhé

Bài 2 : 

a, \(A=\left|2x-4\right|+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=\left|x+2\right|-3\ge-3\)

Dấu ''='' xảy ra khi x = -2 

Vậy GTNN B là -3 khi x = -2 

b) Thay x=-1 vào biểu thức \(B=\dfrac{2x^2+5x+4}{x^2-4x+3}\), ta được:

\(B=\dfrac{2\cdot\left(-1\right)^2+5\cdot\left(-1\right)+4}{\left(-1\right)^2-4\cdot\left(-1\right)+3}=\dfrac{2\cdot1-5+4}{1+4+3}=\dfrac{1}{8}\)

Vậy: Khi x=-1 thì \(B=\dfrac{1}{8}\)

5 tháng 3 2021

Ta có:

|x| = \(\dfrac{1}{3}\)

\(\Rightarrow x=\dfrac{1}{3};x=-\dfrac{1}{3}\)

27 tháng 9

a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0

    (\(x-2\))2 ≥ 0 ∀\(x\)\(x+1\) = 0 ⇒ \(x=-1\)\(x-4\) = 0 ⇒ \(x=4\)

Lập bảng ta có:

\(x\)        - 1             4
\(x+1\)  -       0       +    |       +
\(x-4\)  -       |         -     0     +
(\(x-2\))2 +       |        +     |      +
(\(x-2\))2.(\(x+1\)).(\(x+4\))   +     0       -      0     +

Theo bảng trên ta có: -1 < \(x\) < 4

Vậy \(-1< x< 4\)

27 tháng 9

b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0

    \(x-3=0\)⇒ \(x=3\)\(x-9\) = 0 ⇒ \(x=9\)

    Lập bảng ta có:

\(x\)            3                                 9
\(x-3\)     -      0      +                         |     +
\(x-9\)     -     |         -                         0    + 
\(x^2\)   +       |        +                         |     +                              
\(x^2\)(\(x-3\)):(\(x-9\))    +     0         -                      0      +

Theo bảng trên ta có:     3 < \(x\) < 9

Vậy 3 < \(x\) < 9

 

22 tháng 6 2019

Bài 1 tôi làm 1 phần hướng dẫn thôi nhé các phần còn lại bạn nhìn theo mà làm . Nếu bí thì nhắn tin cho tôi để tôi làm nốt

a) \(|3x-1|-|2x+3|=0\left(1\right)\)

Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)

       \(2x+3=0\Leftrightarrow x=\frac{-3}{2}\)

Lập bảng xét dấu :

3x-1 2x+3 -3/2 1/3 0 0 - - - + + +

+) Với \(x< \frac{-3}{2}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=-2x-3\end{cases}\left(2\right)}}\)

Thay (2) vào (1) ta được :

\(\left(1-3x\right)-\left(-2x-3\right)=0\)

\(1-3x+2x+3=0\)

\(-x+4=0\)

\(x=4\)( chọn )

+) Với \(\frac{-3}{2}\le x\le\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=2x+3\end{cases}\left(3\right)}}\)

Thay (3) vào (1) ta được :

\(\left(1-3x\right)-\left(2x+3\right)=0\)

\(1-3x-2x-3=0\)

\(-5x-2=0\)

\(x=\frac{-2}{5}\)( chọn )

+) Với \(x>\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1>0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|2x+3|=2x+3\end{cases}\left(4\right)}}\)

Thay (4) vào (1) ta được :

\(\left(3x-1\right)-\left(2x+3\right)=0\)

\(3x-1-2x-3=0\)

\(x-4=0\)

\(x=4\)( chọn )

Vậy \(x\in\left\{4;\frac{-2}{5}\right\}\)

22 tháng 6 2019

Bài 2:

a) Ta có: \(|2x+1|\ge0\forall x\)

\(\Rightarrow|2x+1|-7\ge0-7\forall x\)

Hay \(A\ge-7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x+1=0\)

                         \(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Min A=-7 \(\Leftrightarrow x=\frac{-1}{2}\)

b) ko biết

c) Ta có: \(|1-x|+|x-2|\ge|1-x+x-2|\)

Hay \(C\ge-1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-x\right).\left(x-2\right)\ge0\)

( giải các th nếu ko giải đc thì nhắn tin riêng nhé :)) )