Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : |2x - 5| = x + 1
\(\Leftrightarrow\orbr{\begin{cases}2x-5=-x-1\\2x-5=x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+x=-1+5\\2x-x=1+5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=4\\x=6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=6\end{cases}}\)
\(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c dãy tỉ số = nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{31}{30}}=-\frac{990}{31}\)
\(\frac{x}{\frac{1}{2}}=-\frac{990}{31}\Rightarrow x=-\frac{495}{31}\)
\(\frac{y}{\frac{1}{3}}=-\frac{990}{31}\Rightarrow y=-\frac{330}{31}\)
\(\frac{z}{\frac{1}{5}}=-\frac{990}{31}\Rightarrow z=-\frac{198}{31}\)
Vậy ...
Có: \(2x=3y=5z\)
=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{-33}{31}\)
=> \(\begin{cases}x=-\frac{495}{31}\\y=-\frac{330}{31}\\z=-\frac{198}{31}\end{cases}\)
a) 2x = 3y = 5z
=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số = nhau , ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y+z}{3+5+2}=\frac{-33}{10}\)
=> x = 3.(-33/10) = -99/10
y = 5.(-33/10) = -165/10
z = 2.(-33/10) = -66/10
a) \(A=x^3+2x^2+7x-4-x-x^3-2x^2+1\)
\(A=\left(x^3-x^3\right)+\left(2x^2-2x^2\right)+\left(7x-x\right)+\left(-4+1\right)\)
\(A=6x-3\)
b) Thay x = (-5)
\(\Rightarrow A=6.\left(-5\right)-3\)
\(\Rightarrow A=-30-3\)
\(\Rightarrow A=-33\)
c) \(A=6x-3\)
\(10=6x-3\)
\(13=6x\)
\(x=\frac{13}{6}\)
a, Ta có : \(P\left(x\right)+Q\left(x\right)\)hay
\(3x^5-4x^4+2x^3-7x+1+x^5-x^3+4x-5=4x^5-4x^4+x^3-3x-4\)
b, Ta có : \(P\left(x\right)-Q\left(x\right)\)hay
\(3x^5-4x^4+2x^3-7x+1-x^5+x^3-4x+5=2x^5-4x^4+3x^3-11x+6\)
\(A=\left|2x+1\right|+13\ge13\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
\(B=-\left(3x+5\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{5}{3}\)
a, Vì |2x+1|≥0 với mọi
⇒A≥13
Dấu = xảy ra ⇔2x+1=0⇔x=\(\dfrac{-1}{2}\)
b, Vì (3x+5)2≥0 với mọi x
⇒B≤9
Dấu = xảy ra ⇔3x+5=1⇔x=\(\dfrac{-5}{3}\)
Ta có :
\(\left|1-2x\right|-\left|3x+1\right|=0\)
\(\Leftrightarrow\)\(\left|1-2x\right|=\left|3x+1\right|\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}1-2x=3x+1\\1-2x=-3x-1\end{cases}\Leftrightarrow\orbr{\begin{cases}3x+2x=1-1\\-2x+3x=-1-1\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x=0\\x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Vậy \(x=0\) hoặc \(x=-2\)
Chúc bạn học tốt ~