\(x^2-4x+4=8\left(x-2\right)^5\)

2.Tìm m sao cho đa thức x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2019

\(1.x^2-4x+4=8\left(x-2\right)^5\)

\(\Leftrightarrow\left(x-2\right)^2-8\left(x-2\right)^5=0\)

\(\Leftrightarrow\left(x-2\right)^2\left[1-8\left(x-2\right)^3\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\1-8\left(x-2\right)^3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\\left(x-2\right)^3=\frac{1}{8}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}}\)

5 tháng 10 2019

\(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)

\(=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)

\(=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)(Vì a+b=1)

\(=4a^2-4ab+3b^2-6a^2-6b^2\)

\(=-2a^2-4ab-2b^2\)

\(=-2\left(a+b\right)^2=-2\)

24 tháng 10 2022

a: \(M=2\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]-3\left[\left(a+b\right)^2-2ab\right]\)

\(=2\left(1-3ab\right)-3\left(1-2ab\right)\)

\(=2-6ab-3+6ab=-1\)

b: \(4x^4+2x^2+a⋮x-2\)

\(\Leftrightarrow4x^4-8x^3+8x^3-16x^2+14x^2-56+a+56⋮x-2\)

=>a+56=0

=>a=-56

c: \(A=x^2+8x+16+4y^2+4y+1-34\)

\(=\left(x+4\right)^2+\left(2y+1\right)^2-34>=-34\)

Dấu = xảy ra khi x=-4 và y=-1/2

d: \(\left(x+1\right)\left(2-x\right)-\left(3x+5\right)\left(x+2\right)=-4x^2+2\)

\(\Leftrightarrow2x-x^2+2-x-3x^2-6x-5x-10=-4x^2+2\)

=>-4x^2-10x-8=-4x^2+2

=>-10x=10

=>x=-1

x^2-5x-3=0

\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(-3\right)=25+12=37\)>0

=>PT có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{5-\sqrt{37}}{2}\\x_2=\dfrac{5+\sqrt{37}}{2}\end{matrix}\right.\)

e: \(\left(a-b\right)^2+4ab\)

\(=a^2-2ab+b^2+4ab\)

\(=a^2+2ab+b^2=\left(a+b\right)^2\)

12 tháng 12 2017

Bài 7 :

Phân thức đại số

18 tháng 10 2019

Mình đang cần gấp . Đảm bảo k trả đầy đủ + kb :'>

18 tháng 10 2019

2.    \(Q=\left(x-3\right)\left(4x+5\right)+2019\)

        \(Q=4x^2+5x-12x-15+2019\)   

        \(Q=4x^2-7x+2004\)  

        \(Q=\left(2x\right)^2-2.2x.\frac{7}{4}+\frac{49}{16}+2019-\frac{49}{16}\) 

        \(Q=\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\)  

        \(Do\) \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\) \(Nên\) \(\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\ge\frac{32255}{16}\)  

        \(\Rightarrow Q\ge\frac{32255}{16}\) 

         \(Vậy\) \(MinQ=\frac{32255}{16}\Leftrightarrow x=\frac{7}{8}\)

3. \(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)  

   \(T=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\) 

   \(T=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)  (do a+b=1)

   \(T=4a^2-4ab+4a^2-6a^2-6b^2\) 

   \(T=-2a^2-4ab-2b^2\)

   \(T=-2\left(a^2+2ab+b^2\right)\) 

   \(T=-2\left(a+b\right)^2\)

   \(T=-2.1^2=-2.1=-2\) (do a+b=1)

   

30 tháng 11 2016

các bạn làm giùm mih đi câu nào cũng được

29 tháng 5 2018

a) Ta có: P(x) = 3y + 6 có nghiệm khi

3y + 6 = 0

3y = -6

y = -2

Vậy đa thức P(y) có nghiệm là y = -2.

b) Q(y) = y4 + 2

Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y

Nên y4 + 2 có giá trị lớn hơn 0 với mọi y

Tức là Q(y) ≠ 0 với mọi y

Vậy Q(y) không có nghiệm.

3 tháng 12 2016

chịch chịch chịch

24 tháng 2 2020

a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)

\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)

\(-2y^3\left(4x^3-xy^2+y^3\right)\)

\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)

\(-8x^3y^3+2xy^5-2y^6\)

\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)

\(-\left(x^3y^3+8x^3y^3\right)\)

\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)

24 tháng 2 2020

b) 

(!)  \(2\left(x+y\right)^2-7\left(x+y\right)+5\)

\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)

\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)

\(=\left(2x+2y-5\right)\left(x+y-1\right)\)

(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)

\(=2\left(xy+yz+zx\right)\)

28 tháng 10 2017

Bài 1.

a) 2x - x2

= x(2 - x)

b) 16x2 - y2

= (4x + y)(4x - y)

c) xy + y2 - x - y

= (xy + y2) - (x + y)

= y(x + y) - (x + y)

= (y - 1)(x + y)

d) x2 - x - 12

= x2 + 3x - 4x - 12

= (x2 + 3x) - (4x + 12)

= x(x + 3) - 4(x + 3)

= (x - 4)(x + 3)

Bài 2.

(2x + 3y)(2x - 3y) - (2x - 1)2 + (3y - 1)2

= (2x + 3y)(2x - 3y) + [(3y - 1)2 - (2x - 1)2]

= (2x + 3y)(2x - 3y) + (3y - 1 + 2x - 1)(3y - 1 - 2x + 1)

= (2x + 3y)(2x - 3y) + (3y + 2x - 2)(3y - 2x)

= (2x + 3y)(2x - 3y) - (2x + 3y - 2)(2x - 3y)

= (2x - 3y)(2x + 3y - 2x - 3y + 2)

= 2.(2x + 3y)

Thay x = 1; y = -1 và biểu thức đại số, ta có:

2[2.1 + 3.(-1)]

= 2(2 - 3)

= 2.(-1) = -2

Bài 3

a) 9x2 - 3x = 0

3x(3x - 1) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}3x=0\\3x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\3x=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)

b) x2 - 25 - (x + 5) = 0

(x2 - 25) - (x + 5) = 0

(x - 5)(x + 5) - (x + 5) = 0

(x - 5 - 1)(x + 5) = 0

(x - 6)(x + 5) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\)

c) x2 + 4x + 3 = 0

x2 + x + 3x + 3 = 0

(x2 + x) + (3x + 3) = 0

x(x + 1) + 3(x + 1) = 0

(x + 3)(x + 1) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)

d) (3x - 1)(2x - 7) - (x + 1)(6x - 5) = 16

6x2 - 21x - 2x + 7 - 6x2 + 5x - 6x + 5 - 16 = 0

-24x - 4 = 0

\(\Rightarrow\)-24x = 4

\(\Rightarrow\) x = \(\dfrac{-1}{6}\)

28 tháng 10 2017

Bài 1:Phân tích đa thức thành nhân tử

a,2xx2

=x(2-x)

b,

16x2y2

=(4x-y)(4x+y)

c,xy+y2xy

=(xy+y2)-(x+y)

=y(x+y)-(x+y)

=(x+y)(y-1)

d,

x2x12

=x2-4x+3x-12

=(x2-4x)+(3x-12)

=x(x-4)+3(x-4)

=(x-4)(x+3)