Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7^{32}=\left(7^{\frac{32}{99}}\right)^{99}\approx1,9^{99}\)
Vì \(1,9^{99}< 2^{99}\Rightarrow7^{32}< 2^{99}\)
a/ 40^20=40^2.10=1600^10
3^30=3^3.10=27^10
vì 1600^10>27^10 nên 40^20>3^30
a) 40^20=(4^2)^10=16^10
30^30=(3^3)^10=27610
Vì 16<27=>16^10<27^10 hay 4^20<3^30
b) mk chịu
c) Đặt A= 1/3+1/3^2+1/3^3+...+1/3^99
=>3A=3( 1/3+1/3^2+1/3^3+...+1/3^99)
=>3A=1+1/3+1/3^2+...+1/3^98
=>3A-A=(1+1/3+1/3^2+...+1/3^98)-(1/3+1/3^2+1/3^3+...+1/3^99)
=>2A=1-1/3^99
=>A=(1-1/3^99)/2
=>A=1/2 - (1/3^99)/2 < 1/2=>a<1/2
799+100+101=7300
Vì 300>102
Nên 7300>7102
=> 799 + 7100 + 7101 > 7102
b) Ta có:
\(2^{3n}=\left(2^3\right)^n=8^n\)
\(3^{2n}=\left(3^2\right)^n=9^n\)
Vì \(8^n< 9^n\Rightarrow2^{3n}< 3^{2n}\)
Vậy \(2^{3n}< 3^{2n}\)
Câu 1:
\(A=27^2.32^3=\left(3^3\right)^2.\left(2^5\right)^3=3^6.2^{15}\)
\(B=6^{16}=2^{16}.3^{16}\)
Từ \(\hept{\begin{cases}2^{15}< 2^{16}\\3^6< 3^{16}\end{cases}\Leftrightarrow2^{15}.3^6< 2^{16}.3^{16}\Leftrightarrow}A< B\)
Câu 2:
\(A=1+2+2^2+2^3+...+2^{2016}\)
<=>\(2A=2\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(2A=2+2^2+2^3+2^4...+2^{2017}\)
<=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(A=2^{2017}-1< 2^{2017}=B\)
Vậy A<B
muốn viết dấu mũ như thế kia thì viết thế nào hả bạn ?
1. A - B = 40+ 3/8 + 7/82 + 5/83 + 32/85 - (24/82 + 40+ 5/82 + 40/84 + 5/84 )
= 40.85/85 + 3.84/85 + 7.83/85 + 5.82/85 + 32/85 - 24.83/85 - 40.85/85 - 5.83/85 - 40.8/85 - 5.8/85
= 40.85/85 + 24.83/85 + 7.83/85 + 5.82/85 + 32/85 - 24.83/85 - 40.85/85 - 5.83/85 - 40.8/85 - 5.8/85
= 7.83/85 + 5.82/85 + 32/85 - 5.83/85 - 40.8/85 - 5.8/85
= 7.83/85 + 5.82/85 -8/85 - 5.83/85 - 40.8/85
= 2.83/85 + 5.82/85 - 40.8/85 - 8/85
= 2.83/85 + 40.8/85 - 40.8/85 - 8/85
= 2.83/85 - 8/85 > 0
Vay A > B
7 ^ 32 <2 ^99
732<299 (Vì 1.104427674x1027<6.338253001x1029).