\(2x^2+x+y+1=x^2+2y^2+xy\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

Em thử ha!

PT \(\Leftrightarrow x^2+\left(1-y\right)x+\left(y+1-2y^2\right)=0\)

Để pt có nghiệm thì \(\Delta=\left(1-y\right)^2-4\left(-2y^2+y+1\right)\ge0\)

\(\Leftrightarrow9y^2-6y-3\ge0\). Để pt có nghiệm nguyên thì \(\Delta=9y^2-6y-3=k^2\left(k\in\mathbb{N}\right)\)

\(\Leftrightarrow\left(3y-1\right)^2-k^2=4\Leftrightarrow\left(3y-1-k\right)\left(3y-1+k\right)=4\)

Với mọi k thuộc N thì \(3y-1+k-\left(3y-1-k\right)=2k\ge0\)

Nên \(3y-1+k\ge3y-1-k\)

Do vậy ta xét các trường hợp:

TH1:\(\left\{{}\begin{matrix}3y-1+k=2\\3y-1-k=2\end{matrix}\right.\Leftrightarrow6y-2=4\Leftrightarrow y=1\). Thay vào pt ban đầu tìm x

TH2: \(\left\{{}\begin{matrix}3y-1+k=-2\\3y-1-k=-2\end{matrix}\right.\Leftrightarrow y=-\frac{1}{3}\). Thay vào tìm x

TH3: \(\left\{{}\begin{matrix}3y-1+k=4\\3y-1-k=1\end{matrix}\right.\Leftrightarrow y=\frac{7}{6}\). Thay vào tìm x

TH4: \(\left\{{}\begin{matrix}3y-1+k=-1\\3y-1-k=-4\end{matrix}\right.\Leftrightarrow y=-\frac{1}{2}\). Thay vào tìm x

Hết các trường hợp chưa ta??:3

17 tháng 11 2018

\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)

\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)

17 tháng 11 2018

2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)

TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)

TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)

TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

Vậy......

24 tháng 8 2017

>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0

>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)

có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong

12 tháng 3 2016

thông điệp nhỏ:

hay kkhi ko muốn k

7 tháng 8 2017

\(\sqrt{2x+1}-\sqrt{3x}=x-1\)

ĐK: \(x\ge0\)

\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)

\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)

7 tháng 8 2017

ai giải hộ mk ý a vs ý c

17 tháng 10 2020

a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)

Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)

Th2: \(x,y\ne1\)

\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)

Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0

Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)

Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4

Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)

17 tháng 10 2020

b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)

Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)

* Th1: \(x^2+2y^2=0\)(*)

Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ

* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\) 

Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

NV
20 tháng 3 2019

Cộng vế với vế:

\(x^2+2xy+y^2+3x+3y-4=0\)

\(\Leftrightarrow\left(x+y\right)^2+3\left(x+y\right)-4=0\Rightarrow\left[{}\begin{matrix}x+y=1\\x+y=-4\end{matrix}\right.\)

TH1: \(x+y=1\Rightarrow y=1-x\) thay vào pt dưới:

\(x\left(1-x\right)+x+2\left(1-x\right)-1=0\)

\(\Leftrightarrow-x^2+1\Rightarrow\left[{}\begin{matrix}x=1;y=0\\x=-1;y=2\end{matrix}\right.\)

TH2: \(x+y=-4\Rightarrow y=-4-x\)

\(x\left(-4-x\right)+x+2\left(-4-x\right)-1=0\)

\(\Leftrightarrow x^2+5x+9=0\) (vô nghiệm)