Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6
=>5y^2=45 và x^2=13-y^2
=>y^2=9 và x^2=4
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)
=>x=1 và y=169/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)
=>x+1=11/9 và y+4=-11/19
=>x=2/9 và y=-87/19
Dự đoán dấu = xảy ra khi x=y=\(\dfrac{z}{2}\)
ta có: \(VT=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{x^2}\)
\(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\right)+\left(\dfrac{z^2}{y^2}+\dfrac{z^2}{x^2}\right)\)
Áp dụng BĐT AM-GM: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge2\)
Áp dụng BĐT bunyakovsky:\(\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\ge\dfrac{1}{2}\left(\dfrac{y}{z}+\dfrac{x}{z}\right)^2=\dfrac{1}{2}.\dfrac{\left(x+y\right)^2}{z^2}\)
\(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\ge\dfrac{1}{2}\left(\dfrac{z}{x}+\dfrac{z}{y}\right)^2\ge\dfrac{1}{2}\left(\dfrac{4z}{x+y}\right)^2=\dfrac{8z^2}{\left(x+y\right)^2}\)(AM-GM)
do đó \(VT\ge5+\dfrac{1}{2}\dfrac{\left(x+y\right)^2}{z^2}+\dfrac{8z^2}{\left(x+y\right)^2}\)
Đặt \(\dfrac{z}{x+y}=a\)(a>0)thì \(a\ge1\)do \(z\ge x+y\)
\(VT\ge8a^2+\dfrac{1}{2a^2}+5=\dfrac{a^2}{2}+\dfrac{1}{2a^2}+\dfrac{15}{2}a^2+5\ge\dfrac{a^2}{2}+\dfrac{1}{2a^2}+\dfrac{25}{2}\)
Áp dụng BĐT AM-GM: \(\dfrac{a^2}{2}+\dfrac{1}{2a^2}\ge2\sqrt{\dfrac{a^2}{4a^2}}=1\)
do đó \(VT\ge1+\dfrac{25}{2}=\dfrac{27}{2}\)(đpcm)
Dấu = xảy ra khi a=1 hay \(x=y=\dfrac{z}{2}\)
Cho x,y > 0. Tìm GTNN của:
a) x2 + y2 + \(\dfrac{1}{xy}\) với x + y = 2
b) x + y + \(\dfrac{1}{xy}\)
a ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :
\(x^2+y^2+\dfrac{1}{xy}\ge\dfrac{\left(x+y\right)^2}{2}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{4}}=\dfrac{2^2}{2}+\dfrac{1}{\dfrac{2^2}{4}}=2+1=3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=1\)
Vậy ...
b ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :
\(x+y+\dfrac{1}{xy}\ge3\sqrt[3]{xy.\dfrac{1}{xy}}=3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\dfrac{1}{xy}\)
\(\Leftrightarrow x^2y=y^2x=1\)
\(\Leftrightarrow x^3y^3=1\Leftrightarrow xy=1\left(x;y>0\right)\)
\(\Leftrightarrow x=y=1\)
Vậy ...
\(a.x^2-2xy+6y^2-12x+2y+41\)
\(=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5\)
\(=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y-1\right)^2\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2\) ≥ \(0\)
\(b.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}-\dfrac{2x}{y}-\dfrac{2y}{x}+3\)
\(=\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1+\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1+1\)
\(=\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2+1>0\)