Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) + ΔADB ∼ ΔAEC ( g.g )
\(\Rightarrow\frac{AD}{AB}=\frac{AE}{AC}\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\)
+ ΔADE ∼ ΔABC ( c.g.c )
b) + AC // MH \(\Rightarrow\frac{AH}{AB}=\frac{MC}{CB}\)
+ AB // MK \(\Rightarrow\frac{CK}{AC}=\frac{MC}{CB}\)
\(\Rightarrow\frac{CK}{AC}-\frac{AH}{AB}=0\)
\(\Rightarrow\left(\frac{CK}{AC}+1\right)-\frac{AH}{AB}=1\)
\(\Rightarrow\frac{AK}{AC}-\frac{AH}{AB}=1\)
a) Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:
\(AH^2=AM\cdot AB\left(1\right)\)
Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:
\(AH^2=AN\cdot AC\left(2\right)\)
Từ(1) và (2) ta được: \(AM\cdot AB=AN\cdot AC\)
b) Ta có: MHNA là hình chữ nhật(pn tự cm nha cái này dễ)
\(\Rightarrow MH=AN\)
Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:
\(HN^2=AN\cdot NC\)
Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:
\(HM^2=AM\cdot MB\)
Áp dụng hệ thức lượng trong \(\Delta vAHN\), ta có:
\(AN^2+HN^2=AH^2\)
Mà \(MH=AN\)
\(\Rightarrow MH^2+HN^2=AH^2\)
\(\Rightarrow BM\cdot MA+AN\cdot NC=BH\cdot HC\)
c) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AC^2=HC\cdot BC\left(1\right)\)
Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AB^2=HB\cdot BC\left(2\right)\)
Lấy (2) chia (1) ta được: \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
d) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AC^2=HC\cdot BC\Rightarrow AC^4=HC^2\cdot BC^2\)
\(\Rightarrow AC^4=NC\cdot AC\cdot BC^2\Rightarrow AC^3=NC\cdot BC^2\left(1\right)\)
Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AB^2=HB\cdot BC\Rightarrow AB^4=HB^2\cdot BC^2\)
\(\Rightarrow AB^4=BM\cdot AB\cdot BC^2\Rightarrow AB^3=BM\cdot BC^2\left(2\right)\)
Lấy (2) chia (1) ta được: \(\dfrac{BM}{CN}=\left(\dfrac{AB}{AC}\right)^3\)
EH // AC (EH _I_ AB và AC _I_ AB)
\(\Rightarrow\dfrac{BE}{AB}=\dfrac{BH}{BC}\Rightarrow BE=\dfrac{BH}{BC}\times AB\) (hệ quả của định lý Talet)
FH // AB (FH _I_ AC và AB _I_ AC)
\(\Rightarrow\dfrac{CF}{AC}=\dfrac{CH}{BC}\Rightarrow CF=\dfrac{CH}{BC}\times AC\) (hệ quả của định lý Talet)
Áp dụng hệ thức lượng trong tam giác ABC vuông tại A:
(+) \(AH\times BC=AB\times AC\Rightarrow AH=\dfrac{AB\times AC}{BC}\)
(+) \(AH^2=BH\times CH\)
Ta có:
\(BC\times BE\times CF=BC\times\dfrac{BH}{BC}\times AB\times\dfrac{CH}{BC}\times AC\)
\(=\left(BH\times CH\right)\times\left(\dfrac{AB\times AC}{BC}\right)=AH^2\times AH=AH^3\left(\text{đ}pcm\right)\)
Nếu đến tối nay mà còn bí thì hú mình. Mình không hứa sẽ làm được bài này nhưng hứa sẽ suy nghĩ cùng b :p
@Akai Haruma, @Ace Legona, @Ace Legona, @Thiên Thảo giúp mk vs!!!!