K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2022

a/

Nếu n lẻ => n+3 chẵn => (n+3)(n+6) chẵn nên chia hết cho 2

Nếu n chẵn => n+6 chẵn => (n+3)(n+6) chẵn nên chia hết cho 2

\(\Rightarrow\left(n+3\right)\left(n+6\right)⋮2\forall n\)

b/

+ Nếu n chẵn => n(n+5) chẵn

+ Nếu n lẻ => n+5 chẵn => n(n+5) chẵn

=> n(n+5) chẵn \(\forall n\)

bajn ơi coh mk hỏi chỗ cuối là 2An (A ngược) nghĩa là j v bn

12 tháng 8 2019

Giải:

Ta có a chia cho 72 dư 24

\(\Rightarrow a=72m+24\)

\(\Leftrightarrow a=2\left(36m+12\right)\) \(⋮\) 2

hay : \(a=3\left(24m+8\right)⋮3\)

hay: \(a=6\left(12m+4\right)⋮6\)

Vậy: \(a\) chia hết cho 2;3 và 6

12 tháng 8 2019

Bài 2: Ta có: 60.n+45 = 15.4.n+15.3

= \(15\left(4n+3\right)\) \(⋮\) \(15\)

Lại có: 60.n+45 = \(30.2.n+30+15\)

\(=30.\left(2n+1\right)+15\)

Do 30.(2n+1) \(⋮\) 30 mà 15 \(⋮̸\)30

\(̸\)\(\Rightarrow30.\left(2n+1\right)+15\) \(⋮̸\) 30

hay: \(60.n+45\) \(⋮̸\) \(30\)

Vậy: 60.n+45 chia hết cho 15 nhưng ko chia hết cho 30.

6 tháng 10 2016

Ta có: 

A=\(n^2\)+n+1

A=n.(n+1)+1

a) do n.(n+1) là tích 2 số tự nhiên liên tiếp => n.(n+1) chia hết cho 2 ; 1ko chia hết cho 2

=>  n.(n+1)+1 ko chia hết cho 2

=>  A KO CHIA HẾT CHO 2

b) do n.(n+1) là tích 2 số tự nhiên liên tiếp => n.(n+1) chỉ có thể tận cùng là 0,2,6

=>n.(n+1)+1 chỉ có thể tận cùng là 1;3;7 ko chia hết cho 5

=> A ko chia hết cho 5

6 tháng 10 2016

ko ai giải thì sao bây giờ

10 tháng 1 2023

2 Tìm n

a, n+6 chia hết cho n+1/ =n+1+5 chia hết cho n+1/ =(n+1).5 chia hết cho n+1/ suy ra n+1 thuộc ước (5)

Để n+1 chia hết cho n+1

suy ra 5 chia hết cho n+1/ Suy ra n thuộc Ư(5)=(-1; -5; 1; 5)

Ta lập bảng

n+1                -1                     -5                             1                        5

n                    -2                     -6                              0                       4

suy ra: n thuộc (-2; -6; 0; 4)

thử lại đi xem coi đúng ko nhé

             

4 tháng 8 2017

Vì n là số tự nhiên nên sảy ra hai trường hợp

+ n là số lẻ thì n = 2k + 1

=> (2k + 1 + 2)(2k + 1 + 5) = (2k + 3)(2k + 6) = (2k + 3)2(k + 3) chia hết cho 2

+ n là số chẵn thì n = 2k

=> (2k + 2)(2k + 5) = 2(k + 1)(2k + 5) chia hết cho 2

4 tháng 8 2017

cám ơn bn 

13 tháng 3 2018

mik hieu dc 3 cau roi

3 tháng 1 2019

Vì a là số nguyên tố > 3 nên a có dạng a = 3k + 1 hoặc a = 3k + 2 \(\left(k\inℕ\right)\)

-Nếu a = 3k + 1 thì \(\left(a-1\right)\cdot\left(a+4\right)=\left(3k+1-1\right)\left(3k+1+4\right)=3k\left(3k+5\right)\)

TH1: k là số chẵn thì \(k\left(3k+5\right)⋮2\Rightarrow3k\left(3k+5\right)⋮6\Rightarrow\left(a-1\right)\left(a+4\right)⋮6\)

TH2: k là số lẻ thì \(3k+5⋮2\Rightarrow k\left(3k+5\right)⋮2\Rightarrow3k\left(3k+5\right)⋮6\Rightarrow\left(a-1\right)\left(a+4\right)⋮6\)

-Nếu a = 3k + 2 thì \(\left(a-1\right)\left(a+4\right)=\left(3k+2-1\right)\left(3k+2+4\right)=\left(3k+1\right)\left(3k+6\right)\)

Chứng minh tương tự như trên ta cũng được \(\left(a-1\right)\left(a+4\right)⋮6\)

25 tháng 11 2017

Chứng minh rằng mọi số tự nhiên n thì tích (n+3) . ( n + 6) chia hết cho 2

30 tháng 11 2017

ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)