Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
9x=10y=z/2 và x-y+z=48
hay y/9=x/10=z/2 (vận dụng tỉ lệ thức) và x-y+z=48
từ tỉ lệ thức 9/y=x/10=z/2 và x-y+z=48
áp dụng dãy tỉ số bằng nhau ta có:
y/9=x/10=z/2=x-y=z/9-10+2=48/1=1
từ y/9=1=>y=1.9=9
x/10=1=>x=1.10=10
z/2=1=>1.2=2
vậy y=9
x=10
z=2
(hơi khó hỉu vì ghi bằng máy tính) thông cảm
\(A=\frac{-x^2-2x-5}{x^2+2x+2}=\frac{-\left(x^2+2x+1\right)-4}{\left(x^2+2x+1\right)+1}=\frac{-\left(x+1\right)^2-4}{\left(x+1\right)^2+1}=\frac{-\left(x+1\right)^2-1-3}{\left(x+1\right)^2+1}=\frac{-\left[\left(x+1\right)^2+1\right]-3}{\left(x+1\right)^2+1}=-1-\frac{3}{\left(x+1\right)^2+1}\)Để \(-1-\frac{3}{\left(x+1\right)^2+1}\) đạt GTLN <=> \(-\frac{3}{\left(x+1\right)^2+1}\) đạt GTLN
=> (x + 1)2 + 1 đạt GTNN
Vì \(\left(x+1\right)^2\ge0\) với mọi x \(\in R\)
=> \(\left(x+1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> x = - 1
Vậy GTNN của A = - 1 - 3 = - 4 tại x = - 1
(x-2)(3x-1) < 0
=> \(\begin{cases}x-2< 0\\3x-1>0\end{cases}\) hoặc \(\begin{cases}x-2>0\\3x-1< 0\end{cases}\)
=> \(\begin{cases}x< 2\\x>\frac{1}{3}\end{cases}\) hoặc \(\begin{cases}x>2\\x< \frac{1}{3}\end{cases}\)
=> \(\left[\begin{array}{nghiempt}2>x>\frac{1}{3}\\2< x< \frac{1}{3}\left(vl\right)\end{array}\right.\)
Vậy x nằm trong khoảng từ \(\frac{1}{3}\) -> 2
Vì (x - 2)(3x - 1) < 0
=> x - 2 và 3x - 1 là 2 số trái dấu
Xét 2 trường hợp:
- TH1: \(\begin{cases}x-2< 0\\3x-1>0\end{cases}\)\(\Rightarrow\begin{cases}x< 2\\3x>1\end{cases}\)=> 1/3 < x < 2
- TH2: \(\begin{cases}x-2>0\\3x-1< 0\end{cases}\)\(\Rightarrow\begin{cases}x>2\\3x< 1\end{cases}\)=> 2 < x < 1/3, vô lý
Vậy 1/3 < x < 2 thỏa mãn đề bài
Vì x:2=y:1=z:4
Suy ra:\(\frac{x}{2}=\frac{y}{1}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{2}=\frac{y}{1}=\frac{z}{4}=\frac{x-y+z}{2-1+4}=\frac{3}{5}\)
\(\Rightarrow\begin{cases}\frac{x}{2}=\frac{3}{4}\\\frac{y}{1}=\frac{3}{4}\\\frac{z}{4}=\frac{3}{4}\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{6}{4}\\y=\frac{3}{4}\\z=3\end{cases}\)
Vậy \(x=\frac{6}{4};y=\frac{3}{4};z=3\)
Áp dụng tc dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{1}=\frac{z}{4}=\frac{x-y+z}{2-1+4}=\frac{3}{3}=1\)
\(\frac{x}{2}=1\Rightarrow x=2\)
\(\frac{y}{1}=1\Rightarrow y=1\)
\(\frac{z}{4}=1\Rightarrow z=4\)
Ta có : \(\left\{\begin{matrix}Q=-\left(x-7\right)^2-6\\-\left(x-7\right)^2\le0\\-6=-6\end{matrix}\right.\)
\(\Rightarrow Q=-\left(x-7\right)^2-6\le0-6=-6\)
Vậy GTLN của \(Q=-\left(x-7\right)^2-6\) là \(-6\)
6-/2-x/=4
\(\Rightarrow\)/2-x/=6-4
\(\Rightarrow\)/2-x/=2
\(\Rightarrow\left\{\begin{matrix}2-x=2\\2-x=-2\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x=2-2\\x=2-\left(-2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(\Rightarrow x=\left\{0;4\right\}\)
Vì |x -1,5| \(\ge\) 0
=> -| x - 1,5 | \(\le\) 0
=> A = 0,5 - | x - 1,5 | \(\le\) 0,5
Vậy GTNN của A bằng 0,5
(=) | x - 1,5 | = 0
(=) x - 1,5 = 0
(=) x = 1,5
Bài 2:
\(mxy^2-3xy^2+7xy^2=5xy^2\)
=>m-3+7=5
=>m+4=5
hay m=1