Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x.(x+2/3)=0
=>x=0 hoặc (x-2/3)=0
x-2/3=0
=>x=2/3
vậy x=0 hoặc 2/3
A(x)+B(x)-C(x)
=x^3+2x^2+3x+1-x^3+x+1-2x^2+1=0
=>4x+3=0
=>x=-3/4
3x+1+4.3x=567
3x.3+4.3x=567
3x(3+4)=567
3x.7=567
3x=567:7=81
3x=34
=>x=4
Vậy x=4
a: =>7(x-5)>0
=>x-5>0
=>x>5
b: =>x-1 thuộc {1;-1;11;-11}
=>x thuộc {2;0;12;-10}
c: =>x+1+7 chia hết cho x+1
=>x+1 thuộc {1;-1;7;-7}
=>x thuộc {0;-2;6;-8}
d: =>(x+2)(x-5)<0
=>-2<x<5
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x-3}{5}=\frac{y-1}{4}=\frac{\left(x-3\right)-\left(y-1\right)}{5-4}=\frac{x-3-y+1}{1}=\frac{x-y-2}{1}=\frac{8-2}{1}=6\)
\(\Rightarrow\hept{\begin{cases}x=6.5+3=33\\y=6.4+1=25\end{cases}}\)
Vậy \(\hept{\begin{cases}x=33\\y=25\end{cases}}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta được:
\(\frac{x-3}{5}=\frac{y-1}{4}=\frac{x-3-y+1}{5-4}=\frac{x-y-2}{1}=\frac{6}{1}=6\)
\(\Leftrightarrow\hept{\begin{cases}x=6.5+3=33\\y=6.4+1=25\end{cases}}\)
\(Q\left(x\right)-P\left(x\right)=0\)
\(\Leftrightarrow\left(-6x^2+x^3-8+12\right)-\left(x^3-3x^2+6x-8\right)=0\)
\(\Leftrightarrow\left(-6x^2+x^3+4\right)-\left(x^3-3x^2+6x-8\right)=0\)
\(\Leftrightarrow-6x^2+x^3+4-x^3+3x^2-6x+8=0\)
\(\Leftrightarrow-3x^2-6x+12=0\)
\(\Leftrightarrow-3\left(x^2+2x-4\right)=0\)
\(\Leftrightarrow x^2+2x-4=0\)
\(\Leftrightarrow x^2+2x+1=5\)
\(\Leftrightarrow\left(x+1\right)^2=5\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\Leftrightarrow x=\pm\sqrt{5}-1\)
\(P\left(x\right)-Q\left(x\right)=\left(x^3-3x^2+6x-8\right)-\left(-6x^2+x^3-8+12\right)\)
\(P\left(x\right)-Q\left(x\right)=\left(x^3-3x^2+6x-8\right)-\left(-6x^2+x^3+4\right)\)
\(P\left(x\right)-Q\left(x\right)=x^3-3x^2+6x-8+6x^2-x^3-4\)
\(P\left(x\right)-Q\left(x\right)=3x^2+6x-4\)
Ta cần phân tích \(3x^2+6x-4\) thành nhân tử
Ta có:\(P\left(x\right)-Q\left(x\right)=-\frac{1}{3}\left(-9x^2-18x+12\right)\)
\(=-\frac{1}{3}\left[21-\left(9x^2+18x+9\right)\right]\)
\(=-\frac{1}{3}\left[21-\left(3x+3\right)^2\right]\)
\(=-\frac{1}{3}\left(\sqrt{21}-3x-3\right)\left(\sqrt{21}+3x+3\right)\)
\(\Rightarrow x=\frac{\sqrt{21}-3}{3};x=\frac{-\sqrt{21}-3}{3}\)
(x-2)(3x-1) < 0
=> \(\begin{cases}x-2< 0\\3x-1>0\end{cases}\) hoặc \(\begin{cases}x-2>0\\3x-1< 0\end{cases}\)
=> \(\begin{cases}x< 2\\x>\frac{1}{3}\end{cases}\) hoặc \(\begin{cases}x>2\\x< \frac{1}{3}\end{cases}\)
=> \(\left[\begin{array}{nghiempt}2>x>\frac{1}{3}\\2< x< \frac{1}{3}\left(vl\right)\end{array}\right.\)
Vậy x nằm trong khoảng từ \(\frac{1}{3}\) -> 2
Vì (x - 2)(3x - 1) < 0
=> x - 2 và 3x - 1 là 2 số trái dấu
Xét 2 trường hợp:
Vậy 1/3 < x < 2 thỏa mãn đề bài