Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
`a)` Độ dài đoạn thẳng `BM` là: `AM - AB = 6 - 3 = 3 (cm)`
Độ dài đoạn thẳng `MN` là: `AM - AN = 6 - 5 = 1 (cm)`
`b)` `M` không phải kaf trung điểm của đoạn thẳng `BN`
a)BM=AM-AB=3cm
MN=AM-AN=1cm
b) số liệu đúng không bạn, mình thấy M đâu là trung điểm
Chúc bạn học tốt
HYC-23/1/2022
![](https://rs.olm.vn/images/avt/0.png?1311)
Kẻ ND//AB (D thuộc AB).
Có: \(MC=\dfrac{1}{2}AM;MC+AM=AC\)
\(\Rightarrow\dfrac{AM}{AC}=\dfrac{2}{3};\dfrac{MC}{AC}=\dfrac{1}{3}\).
Có: \(NC=2BN;NC+BN=BC\)
\(\Rightarrow\dfrac{NC}{BC}=\dfrac{2}{3};\dfrac{BN}{BC}=\dfrac{1}{3}\)
△ABC có: ND//AB.
\(\Rightarrow\dfrac{ND}{AB}=\dfrac{DC}{AB}=\dfrac{2}{3}\) (định lí Ta-let)
\(\Rightarrow ND=\dfrac{2}{3}AB=\dfrac{2}{3}.6=4\left(cm\right)\).
\(\dfrac{AD}{AC}=\dfrac{BN}{BC}=\dfrac{1}{3}=\dfrac{MC}{AC}\Rightarrow AD=MC=\dfrac{1}{3}AC\)
Mà \(AD+DM+MC=AC\Rightarrow AD=DM=MC=\dfrac{1}{3}AC\); \(AM=DC=\dfrac{2}{3}AC\).
\(\Rightarrow\dfrac{MD}{AM}=\dfrac{1}{2}\)
△APM có: DN//AP.
\(\Rightarrow\dfrac{ND}{AP}=\dfrac{MD}{AM}=\dfrac{1}{2}\) (hệ quả định lí Ta-let)
\(\Rightarrow AP=2ND=2.4=8\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì M nằm giữa 2 điểm A và B nên khi BM = 1 ta có:MB+MA=3 mà MB=1 suy ra :MA=3-1=2(cm)
Theo đề bài ta có :MA=AN suy ra MA=2 cm thì AN=2 cm .Ta có : BN=MB+MA+AN suy ra BN =1+2+2=5cm
Dđẻ BN có độ dài lớn nhất vì MB sẽ là số có độ dài nhỏ nhất
![](https://rs.olm.vn/images/avt/0.png?1311)
+) Trường hợp 1: Nếu AC < a. Đặt AC = b
A C B M N
M là trung điểm của AC => CM = AC/2 = b/2
C thuộc tia đối của tia AB nên A nằm giữa C và B => CA + AB = CB => b + a = CB
N là trung điểm của BC => CN = CB/2 = (a+ b) /2
Trên cùng tia CB có: CM < CN (vì b/2 < (a+b)/2) => M nằm giữa C và N
=> CM + MN = CN => b/2 + MN = (a+ b)/2 => MN = (a+b)/2 - b/2 = a/2
+) Trường hợp 2: Nếu AC = AB (b = a)
Vì A nằm giữa C và B ; CA = AB => A là trung điểm của CB.Mà M là trung điểm của CB nên M trùng với A => MN = MA
Ta có: M là trung điểm của CA => MA = AC/2 = b/2 = a/2
=> MN = a/2
+) Trường hợp 3: Nếu AC > AB (b > a)
A C B M N
M là trung điểm của AC => CM = AC/2 = b/2
C thuộc tia đối của tia AB nên A nằm giữa C và B => CA + AB = CB => b + a = CB
N là trung điểm của BC => CN = CB/2 = (a+ b) /2
Trên cùng tia CB có: CM < CN (vì b/2 < (a+b)/2) => M nằm giữa C và N
=> CM + MN = CN => b/2 + MN = (a+ b)/2 => MN = (a+b)/2 - b/2 = a/2
Vậy MN = a/2