Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...
Bài 1 :
Ta có :
\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)
Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)
Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n
Chúc bạn học tốt ~
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)
1. 11n+2 + 122n+1
= 11n. 121 + 144n.12
=11n.(133-12) + 144n.12
= 11n.133 + 12(144n - 11n)
11n.133 chia het cho 133
144n-11n chia hết cho 144-11=133
a/ \(\frac{3n}{n-1}=\frac{3n-3+3}{n-1}=3+\frac{3}{n-1}\)
để 3n chia hết cho n-1 thì n-1 phải thuộc ước của 3
suy ra n-1 thuộc -3;-1;1;3
suy ra n thuộc -2;0;2;4
b/\(\frac{n+10}{n-1}=\frac{n-1+11}{n-1}=1+\frac{11}{n-1}\)
để n+10 là bội của n-1 thì 11 phải là bội của n-1
suy ra n-1 thuộc -11;-1;1;11
suy ra n thuộc -10;0;2;12
gặp dạng toán như vậy thì bạn cứ áp dụng cách này để làm nhé
c/ gọi ba số đó là n-1;n;n+1
ta thấy \(\left(n-1\right)+n+\left(n+1\right)=3n\)chia hết cho 3 với mọi n thuộc Z
vậy tổng 3 số liên tiếp luôn chia hết cho 3
nhớ k cho mình nhé ^.^
Ta có : 3n chia hết cho n - 1
<=> 3n - 3 + 3 chia hết cho n - 1
<=> 3(n - 1) + 3 chia hết cho n - 1
<=> 3 chia hết cho n - 1
<=> n - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng:
n - 1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
HD
phản chứng
g/s a/(a+b) không tối giản => ước chung (d) của nó khác 1
hãy c/m d <=1 => dpcm
\(a,\text{ }A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)
\(\Rightarrow n-2+3⋮n-2\)
\(n-2⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)\)
đến đây bn liệt kê ước của 3 r` lm tiếp!
b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
để A đạt giá trị lớn nhất thì \(\frac{3}{n-2}\) lớn nhất
=> n-2 là số nguyên dương nhỏ nhất
=> n-2 = 1
=> n = 3
vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)
2+90=92 là hợp số (chia hết cho 2)
=> đề bài sai =))