Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bđt cauchy-shwarz dạng engel
\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)
Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà a+b+c khác 0 nên a = b = c
\(\Rightarrow N=1\)
Lời giải:
a) Xem lời giải tại đây:
Câu hỏi của U Suck - Toán lớp 8 | Học trực tuyến
b)
Dễ thấy $\triangle AOB\sim \triangle COD$
$\Rightarrow \frac{S_{AOB}}{S_{COD}}=(\frac{AO}{CO})^2$
$\Leftrightarrow \frac{a^2}{b^2}=(\frac{AO}{CO})^2$
$\Rightarrow \frac{AO}{CO}=\frac{a}{b}$
Do đó:
$\frac{S_{OAB}}{S_{BOC}}=\frac{OA}{OC}=\frac{a}{b}$
$\Rightarrow S_{BOC}=ab$ (m vuông)
$\frac{S_{DOC}}{S_{OAD}}=frac{OC}{OA}=\frac{b}{a}$
$\Rightarrow S_{OAD}=ab$ (m vuông)
Vậy:
$S_{ABCD}=S_{AOB}+S_{BOC}+S_{COD}+S_{DOA}=a^2+ab+b^2+ab=(a+b)^2$ (m vuông)
a: Xét ΔADC có MO//DC
nên MO/DC=AM/AD(1)
Xét ΔBDC có ON//CD
nên ON/CD=BN/BC(2)
Xét hình thang ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)
Từ (1), (2) và (3) suy ra OM=ON
b: \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{Mn}\)
\(\Leftrightarrow\dfrac{MN}{AB}+\dfrac{MN}{CD}=2\)
\(\Leftrightarrow\dfrac{2\cdot OM}{AB}+\dfrac{2\cdot ON}{DC}=2\)
\(\Leftrightarrow\dfrac{2\cdot OD}{DB}+\dfrac{2\cdot OB}{DB}=2\)
\(\Leftrightarrow2\cdot\left(OD+OB\right)=2DB\)
=>DB=DB(luôn đúng)
Lời giải:
a) Vì $abc=1$ nên ta có:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac}{abc.+ac+c}+\frac{b.ac}{bc.ac+b.ac+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+1+c}{ac+c+1}=1\)
(đpcm)
b)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow \left\{\begin{matrix} x=ka\\ y=kb\\ z=kc\end{matrix}\right.\)
\(x+y+z=ka+kb+kc=k(a+b+c)=k\)
\(x^2+y^2+z^2=k^2a^2+k^2b^2+k^2c^2=k^2(a^2+b^2+c^2)=k^2\)
\(\Rightarrow A=xy+yz+xz=\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}=\frac{k^2-k^2}{2}=0\)
2) a) \(\frac{x^2-5x+1}{2x+1}+2=-\frac{x^2-4x+1}{x+1}\) (ĐKXĐ: \(x\ne-\frac{1}{2};-1\))
+) x = \(-\frac{2}{3}\), thay vào đề không TM
+ x\(\ne-\frac{2}{3}\)
Từ đề \(\Rightarrow\frac{x^2-5x+1+4x+2}{2x+1}=\frac{-x^2+4x-1}{x+1}\)
\(\Leftrightarrow\frac{x^2-x+3}{2x+1}=\frac{-x^2+4x-1}{x+1}=\frac{\left(x^2-x+3\right)+\left(-x^2+4x-1\right)}{\left(2x+1\right)+\left(x+1\right)}\) \(=\frac{3x+2}{3x+2}=1\)
\(\Rightarrow x^2-x+3=2x+1\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow\left[\begin{matrix}x-\frac{3}{2}=\frac{1}{2}\\x-\frac{3}{2}=-\frac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy ...
chỗ x = -2/3 sửa thành có TM