K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

Câu 1: Đặt a/x là m; b/y là n; c/z là p, ta có: m + n + p = 2; 1/m + 1/n + 1/p = 0. Tìm m2 + n2 + p2 ?

Từ 1/m + 1/n + 1/p = 0

=> mnp(1/m + 1/n + 1/p) = 0
<=> mn + np + mp = 0

Mặt khác, ta có (m + n + p)2 = m2 + n2 + p2 + 2(mp + np + mp) = 4

Mà mn + np + mp = 0 => m2 + n2 + p2 + 0 = 4

Trả lời: Vậy a2/x2 + b2/y2 + c2/z2 = 4

3 tháng 3 2017

Cảm ơn bạn nha !

5 tháng 6 2015

\(D=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2-2\left(\frac{ab}{xy}+\frac{bc}{yz}+\frac{ac}{xz}\right)=4-2\frac{abz+bcx+acy}{xyz}\)

từ đề bài => \(\frac{x}{a}+\frac{y}{b}+\frac{c}{z}=\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\Leftrightarrow\frac{abz+bcx+acy}{abc}=\frac{abz+bcx+acy}{xyz}\Rightarrow abc=xyz\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2=>\frac{abz+bcx+acy}{abc}=2.\)mà abc=xyz =>\(\frac{abz+bcx+acy}{xyz}=2.\)

=> \(D=4-2\frac{abz+bcx+acy}{xyz}=4-2\cdot2=0\)

 

28 tháng 5 2015

D=2 2+2 2+  22

D=4+4+4

D=12

22 tháng 10 2016

Bài 1 :

a) \(x^8+x+1\)

\(=x^8-x^2+\left(x^2+x+1\right)\)

\(=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=\left(x^5+x^2\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=\left(x^5+x^2\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^6-x^5+x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^6-x^5+x^4-x^2+1\right)\left(x^2+x+1\right)\)

b) \(64x^4+y^4\)

\(=\left(8x^2\right)^2+\left(y^2\right)^2+2.8x^2.y^2-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)

14 tháng 4 2019

Vì \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)

\(\Rightarrow\frac{bcx+acy+abz}{abc}=0\)

\(\Rightarrow bcx+acy+abz=0\)

Vì \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)

\(\Rightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=4\)

\(\Rightarrow\left(\frac{a}{x}\right)^2+\left(\frac{b}{y}\right)^2+\left(\frac{c}{z}\right)^2+2\left(\frac{ab}{xy}+\frac{bc}{yz}+\frac{ca}{zx}\right)=4\)

\(\Rightarrow\left(\frac{a}{x}\right)^2+\left(\frac{b}{y}\right)^2+\left(\frac{c}{z}\right)^2=4\)

6 tháng 2 2017

1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)

\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm 

2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)

tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1

3) kiểm tra lại xem đề đã chuẩn chưa