Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3-2x^2+x=0\)
\(\Leftrightarrow x\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy....
b) \(-x^4-x^2-3=0\)
\(\Leftrightarrow x^4+x^2+3=0\)
\(\Leftrightarrow\left(x^2\right)^2+2\cdot x^2\cdot\frac{1}{2}+\frac{1}{4}+\frac{11}{4}=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\frac{-11}{4}\)( vô lý )
Đa thức vô nghiệm
a) Đặt f(x) =\(\left(2x^2-9\right)\left(-x^2+1\right)\)
Ta có: \(f\left(x\right)=0\Leftrightarrow\left(2x^2-9\right)\left(-x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-9=0\\-x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x^2=9\\-x^2=-1\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=\frac{9}{2}\\x^2=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{9}{2}}\\x=\pm1\end{cases}}}\)
Vậy \(x\in\left\{\pm\sqrt{\frac{9}{2}};\pm1\right\}\)là nghiệm của đa thức f(x)
a) \(f\left(1\right)=5-2-3+4\)
\(=0\)
\(\Rightarrow f\left(1\right)⋮x-1\)
Vậy ...
a) \(f\left(-1\right)=5.\left(-1\right)^3-2.\left(-1\right)^2-3.\left(-1\right)+4\)
\(=-5-2+3+4\)
\(=0\)
Vậy x=-1 là nghiệm của đa thức f(x)
b) \(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d\)
\(=-a+b-c+d\)
\(=-\left(a-b+c-d\right)\)
\(=-\left[\left(a+c\right)-\left(b+d\right)\right]\)
\(=0\)( vì a+c=b+d nên (a+c) - (b+d) =0 )
Vậy x=-1 là nghiệm của đa thức f(x)
a) Đặt \(A=x^2-2x+5\)
\(=\left(x-1\right)^2+4\)
Ta thấy \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge0+4\forall x\)
hay \(A\ge4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy Min A=4 \(\Leftrightarrow x=1\)
a , \(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
Dấu " = " xảy ra khi x - 1 = 0 hay x = 1
Vậy GTNN là 4 khi x = 1 .
b , \(9-4x-x^2=-\left(x^2+4x-9\right)=-\left(x^2+4x+4-13\right)=-\left(x+2\right)^2+13=13-\left(x+2\right)^2\le13\)
Dấu " = " xảy ra khi x + 2 = 0 hay x = -2 .
Vậy GTLN là 13 khi x = -2 .
c , mik ko bt làm
\(p\left(1\right)=1^2+2.a.1+a^2\)
\(Q\left(-1\right)=\left(-1\right)^2+\left(2a+1\right).\left(-1\right)+a^2\)
\(=1-2a-1+a^2\)
Vì \(p\left(1\right)=Q\left(-1\right)\)
\(\Rightarrow1+2a+a^2=1-2a-1+a^2\)
\(\Rightarrow2a+2a+a^2-a^2=1-1-1\)
\(\Rightarrow4a=-1\)
\(\Rightarrow a=\frac{-1}{4}\)
Cách 2:
a) \(f\left(x\right)=3x^3-2x^2+4x-5\)
\(=3x^3-3x^2+x^2-x+5x-5\)
\(=3x^2.\left(x-1\right)+x.\left(x-1\right)+5.\left(x-1\right)\)
\(=\left(x-1\right).\left(3x^2+x+5\right)\)
\(\Rightarrow f\left(x\right)⋮x-1\)
\(M\left(3\right)=3^2-2a.3+a^2\)
\(=9-6a+a^2\)
\(N\left(1\right)=1^4+\left(3a-1\right).1+a^2\)
\(=1+3a-1+a^2\)
Vì \(M\left(3\right)=N\left(1\right)\Rightarrow9-6a+a^2=1+3a-1+a^2\)
\(\Rightarrow-6a-3a+a^2-a^2=1-1-9\)
\(\Rightarrow9a=-9\)
\(\Rightarrow a=1\)
Vậy...
\(ab=c^2\Rightarrow\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a.\left(a+b\right)}{b.\left(a+b\right)}=\frac{a}{b}\left(đpcm\right)\)