Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(p\left(1\right)=1^2+2.a.1+a^2\)
\(Q\left(-1\right)=\left(-1\right)^2+\left(2a+1\right).\left(-1\right)+a^2\)
\(=1-2a-1+a^2\)
Vì \(p\left(1\right)=Q\left(-1\right)\)
\(\Rightarrow1+2a+a^2=1-2a-1+a^2\)
\(\Rightarrow2a+2a+a^2-a^2=1-1-1\)
\(\Rightarrow4a=-1\)
\(\Rightarrow a=\frac{-1}{4}\)
Cách 2:
a) \(f\left(x\right)=3x^3-2x^2+4x-5\)
\(=3x^3-3x^2+x^2-x+5x-5\)
\(=3x^2.\left(x-1\right)+x.\left(x-1\right)+5.\left(x-1\right)\)
\(=\left(x-1\right).\left(3x^2+x+5\right)\)
\(\Rightarrow f\left(x\right)⋮x-1\)
a) Đặt f(x) =\(\left(2x^2-9\right)\left(-x^2+1\right)\)
Ta có: \(f\left(x\right)=0\Leftrightarrow\left(2x^2-9\right)\left(-x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-9=0\\-x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x^2=9\\-x^2=-1\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=\frac{9}{2}\\x^2=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{9}{2}}\\x=\pm1\end{cases}}}\)
Vậy \(x\in\left\{\pm\sqrt{\frac{9}{2}};\pm1\right\}\)là nghiệm của đa thức f(x)
\(M\left(1\right)=a+b+6=0\left(1\right)\)
\(M\left(-2\right)=4a-2b+6=0\left(2\right)\)
\(\Rightarrow2.M\left(1\right)=2a+2b+12=0\left(3\right)\)
Lấy (2) cộng (3) ta được: \(6a+18=0\)
\(\Rightarrow a=-3\)
Thay a=-3 vào (1) ta được \(-3+b+6=0\)
\(\Rightarrow b=-3\)
\(\Rightarrow M\left(1\right)=a+b+6\)(1)
MÀ 1 LÀ NGHIỆM NGUYÊN CỦA PT\(\Rightarrow a+b+6=0\)
TƯƠNG TỰ TA CÓ \(4a+-2b+6=0\)
\(\Rightarrow a+b=4a-2b\Rightarrow3a=3b\Rightarrow a=b\)(2)
THAY VÀO (1)TA ĐƯỢC \(a+a=-6\Rightarrow a=-3\)(3)
TỪ (2)VÀ (3)\(\Rightarrow a=b=-3\)
ko biết đúng hay sai .....
a) \(f\left(1\right)=5-2-3+4\)
\(=0\)
\(\Rightarrow f\left(1\right)⋮x-1\)
Vậy ...
a) \(f\left(-1\right)=5.\left(-1\right)^3-2.\left(-1\right)^2-3.\left(-1\right)+4\)
\(=-5-2+3+4\)
\(=0\)
Vậy x=-1 là nghiệm của đa thức f(x)
b) \(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d\)
\(=-a+b-c+d\)
\(=-\left(a-b+c-d\right)\)
\(=-\left[\left(a+c\right)-\left(b+d\right)\right]\)
\(=0\)( vì a+c=b+d nên (a+c) - (b+d) =0 )
Vậy x=-1 là nghiệm của đa thức f(x)
a) \(x^3-2x^2+x=0\)
\(\Leftrightarrow x\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy....
b) \(-x^4-x^2-3=0\)
\(\Leftrightarrow x^4+x^2+3=0\)
\(\Leftrightarrow\left(x^2\right)^2+2\cdot x^2\cdot\frac{1}{2}+\frac{1}{4}+\frac{11}{4}=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\frac{-11}{4}\)( vô lý )
Đa thức vô nghiệm
a/ M = |3x+8,4|-14,2
Ta thấy:\(\left|3x+8,4\right|\ge0\)
\(\Rightarrow\left|3x+8,4\right|-14,2\ge0-14,2=-14,2\)
\(\Rightarrow M\ge0\)
Dấu = khi x=-2,8
Vậy Mmin=-2,8 khi x=-2,8
b/cách lm mk chưa nghĩ ra nhưng ra
Nmin=26,5 khi x=-1,5
c)P =|x-2012|+|x-2011|
áp dụng Bđt |a|+|b|>=|a+b| ta có:
\(\left|x-2012\right|+\left|x-2011\right|\ge\left|x-2012+2011-x\right|=1\)
\(\Rightarrow P\ge1\)
Dấu = khi \(x\in\left[2011;2012\right]\)
Vậy Pmin=1 khi \(x\in\left[2011;2012\right]\)
x và y tỉ lệ thuận với nhau nên \(x=ky\Rightarrow-5=\frac{1}{2}.k\Rightarrow k=-10\)
Vậy \(x=-10y\)
Ta có: \(x=-10y=\left(-10\right).5=-50\)
Chọn đáp án C
P(0)=-1=> c=-1
P(1)=3=>a+b+c=3=>a+b=4
P(2)=1=>4a+2b+c=1=>4a+2b=2=>2a+b=1=>a=1-4=-3
=>b=4-(-3)=7
Ta có: P(0) = a.02 + b.0 + c = -1
=> c = -1
P(1) = a.12 + b . 1 + c = 3
=> a + b + c = 3
Mà c = -1 => a + b = 3 - (-1) = 4 (1)
P(2) = a.22 + b.2 + c = 1
=> 4a + 2b + c = 1
Mà c = -1 => 2.(2a + b) = 1 - (-1) = 2
=> 2a + b = 2 : 2
=> 2a + b = 1 (2)
Từ (1) và (2) trừ vế với vế, ta có :
(a + b) - (2a + b) = 4 - 1
=> a + b - 2a - b = 3
=> (a - 2a) + (b - b) = 3
=> -a = 3
=> a = -3
Thay a = -3 vào (1) , ta được :
-3 + b = 4
=> b = 4 - (-3)
=> b = 7
Vậy a = -3; b = 7; c = -1
\(M\left(3\right)=3^2-2a.3+a^2\)
\(=9-6a+a^2\)
\(N\left(1\right)=1^4+\left(3a-1\right).1+a^2\)
\(=1+3a-1+a^2\)
Vì \(M\left(3\right)=N\left(1\right)\Rightarrow9-6a+a^2=1+3a-1+a^2\)
\(\Rightarrow-6a-3a+a^2-a^2=1-1-9\)
\(\Rightarrow9a=-9\)
\(\Rightarrow a=1\)
Vậy...