Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^2-13x+36=x^2-4x-9x+36=x\left(x-4\right)-9\left(x-4\right)=\left(x-9\right)\left(x-4\right)\)
b)\(x^2+3x-18=x^2-3x+6x-18=x\left(x-3\right)+6\left(x-3\right)=\left(x+6\right)\left(x-3\right)\)
c)\(x^2-5x-24=x^2+3x-8x-24=x\left(x+3\right)-8\left(x+3\right)=\left(x-8\right)\left(x+3\right)\)
d)\(3x^2-16x+5=3x^2-x-15x+5=x\left(3x-1\right)-5\left(3x-1\right)=\left(x-5\right)\left(3x-1\right)\)
e)\(8x^2+30x+7=8x^2+28x+2x+7=4x\left(2x+7\right)+\left(2x+7\right)=\left(4x+1\right)\left(2x+7\right)\)
g)\(2x^2-7x+3=2x^2-6x-x+3=2x\left(x-3\right)-\left(x-3\right)=\left(2x-1\right)\left(x-3\right)\)
h)\(6x^2-7x+3=6x^2-9x-2x+3=3x\left(2x-3\right)-\left(2x-3\right)=\left(3x-1\right)\left(2x-3\right)\)
i)\(3x^2-14x+11=3x^2-3x-11x+11=3x\left(x-1\right)-11\left(x-1\right)=\left(3x-11\right)\left(x-1\right)\)
k)\(5x^2+8x-13=5x^2-5x+13x-13=5x\left(x-1\right)+13\left(x-1\right)=\left(5x+13\right)\left(x-1\right)\)
a ) \(x^2-13x+36=x^2-4x-9x+36=x\left(x-4\right)-9\left(x-4\right)=\left(x-9\right)\left(x-4\right)\)
b ) \(x^2+3x-18=x^2-3x+6x-18=x\left(x-3\right)+6\left(x-3\right)=\left(x+6\right)\left(x-3\right)\)
c ) \(x^2-5x-24=x^2-3x+8x-24=x\left(x-3\right)+8\left(x-3\right)=\left(x+8\right)\left(x-3\right)\)
d ) \(3x^2-16x+5=3x^2-15x-x+5=3x\left(x-5\right)-\left(x-5\right)=\left(3x-1\right)\left(x-5\right)\)
e ) \(8x^2+30x+7=8x^2+2x+28x+7=2x\left(4x+1\right)+7\left(4x+1\right)=\left(2x+7\right)\left(4x+1\right)\)
g ) \(2x^2-7x+3=2x^2-6x-x+3=2x\left(x-3\right)-\left(x-3\right)=\left(2x-1\right)\left(x-3\right)\)
h ) \(6x^2-7x-20=6x^2-15x+8x-20=3x\left(2x-5\right)+4\left(2x-5\right)=\left(3x+4\right)\left(2x-5\right)\)
i ) \(3x^2-14x+11=3x^2-3x-11x+11=3x\left(x-1\right)-11\left(x-1\right)=\left(3x-11\right)\left(x-1\right)\)
k ) \(5x^2+8x-13=5x^2-5x+13x-13=5x\left(x-1\right)+13\left(x-1\right)=\left(5x+13\right)\left(x-1\right)\)
a) \(x^3-5x^2+8x-4\)
= \(x^3-x^2-4x^2+4x+4x-4\)
= \(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2-4x+4\right)\)
= \(\left(x-1\right)\left(x-2\right)^2\)
b) \(x^3-9x^2+6x+16\)
= \(\left(x-8\right)\left(x-2\right)\left(x+1\right)\)
c) \(x^3+2x-3\)
= \(x^3-x^2+x^2-x+3x-3\)
= \(x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2+x+3\right)\)
d) \(2x^3-12x^2+17x-2\)
= \(2x^3-4x^2-8x^2+16x+x-2\)
= \(2x^2\left(x-2\right)-8x\left(x-2\right)+\left(x-2\right)\)
= \(\left(x-2\right)\left(2x^2-8x+1\right)\)
e) \(x^3-5x^2+3x+9\)
= \(x^3+x^2-6x^2-6x+9x+9\)
= \(x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2-6x+9\right)=\left(x+1\right)\left(x-3\right)^2\)
f) \(x^3-8x^2+17x+10\)
Câu này có vẻ sai đề, nghiệm cực kì khủng bố @@
g) \(x^3-2x-4\)
= \(x^3-2x^2+2x^2-4x+2x-4\)
= \(x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
= \(\left(x-2\right)\left(x^2+2x+2\right)\)
h) \(x^3+x^2+4\)
= \(x^3+2x^2-x^2+4\)
= \(x^2\left(x+2\right)-\left(x-2\right)\left(x+2\right)\)
= \(\left(x+2\right)\left(x^2-x+2\right)\)
i) \(x^3-7x+6\)
= \(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
a)\(2x^2-4x+7=2x^2-4x+2+5=2\left(x^2-2x+1\right)+5=2\left(x-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi x=1
b)\(9x^2-6x+5=\left(3x\right)^2-2.3x.1+1+4=\left(3x-1\right)^2+4\ge5\)
Dấu "=" xảy ra khi x=1/3
c)\(3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left(x^2-2.\frac{5}{6}.x+\frac{25}{36}-\frac{1}{36}\right)\)
\(=3\left[\left(x-\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)
Dấu "=" xảy ra khi x=5/6
mấy câu sau tương tự
a) \(2x^2-4x+7=x^2+x^2-4x+4+3\)
\(=x^2+\left(x-2\right)^2+3\)
GTNN là 3
b) \(9x^2-6x+5=\left(3x\right)^2-2.3x+2+3\)
\(=\left(3x+\sqrt{2}\right)^2+3\)
Gtnn là 3
tạm thời 2 câu vậy nhé !!!
a, \(A=2x^2-4x+7\)
\(=2\left(x^2-2x+1+\dfrac{5}{2}\right)\)
\(=2\left(x-1\right)^2+5\ge5\)
Dấu " = " khi \(2\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy \(MIN_A=5\) khi x = 1
b, \(B=9x^2-6x+5\)
\(=9x^2-6x+1+4\)
\(=\left(3x-1\right)^2+4\ge4\)
Dấu " = " khi \(\left(3x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(MIN_B=4\) khi \(x=\dfrac{1}{3}\)
c, d, e tương tự
a) \(5x\left(3x-7\right)-15x\left(x-1\right)=3\)
\(\Rightarrow15x^2-35x-15x^2+15x=3\)
\(\Rightarrow-20x=3\)
\(\Rightarrow x=-\dfrac{3}{20}\)
b) \(\left(4x+2\right)\left(6x-3\right)-\left(8x+5\right)\left(3x-4\right)=2\)
\(\Rightarrow24x^2+12x-12x-6-24x^2-15x+24x+20=2\)
\(\Rightarrow9x+14=2\)
\(\Rightarrow9x=-12\)
\(\Rightarrow x=-\dfrac{4}{3}\)
c) \(7x^2-21x=0\)
\(\Rightarrow7x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
d) \(9x^2-6x+1=0\)
\(\Rightarrow\left(3x\right)^2-2.3x+1=0\)
\(\Rightarrow\left(3x-1\right)^2=0\)
\(\Rightarrow3x-1=0\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\dfrac{1}{3}\)
e) \(16x^2-49=0\)
\(\Rightarrow\left(4x\right)^2-7^2=0\)
\(\Rightarrow\left(4x-7\right)\left(4x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x-7=0\\4x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=7\\4x=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{4}\\x=-\dfrac{7}{4}\end{matrix}\right.\)
f) \(5x^3-20x=0\)
\(\Rightarrow5x\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x=0\\x^2-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x^2=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=2\\x=-2\end{matrix}\right.\)
a) \(x^2-6x+8\)
\(=x^2-2\cdot x\cdot3+3^2-1\)
\(=\left(x-3\right)^2-1^2\)
\(=\left(x-3-1\right)\left(x-3+1\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
Còn lại tương tự
a) \(x^2-6x+8=x^2-2x-4x+8\)
\(=\left(x^2-2x\right)-\left(4x-8\right)\)
=x(x-2)-4(x-2) = (x-2)(x-4)
Câu 1:
\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)
\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)
Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)
a)\(3x^2-8x+4\)
\(=3x^2-2x-6x+4\)
\(=x\left(3x-2\right)-2\left(3x-2\right)\)
\(=\left(x-2\right)\left(3x-2\right)\)
b)\(3x^2-16x+5\)
\(=3x^2-x-15x+5\)
\(=x\left(3x-1\right)-5\left(3x-1\right)\)
\(=\left(x-5\right)\left(3x-1\right)\)
c)\(2x^2-5x-12\)
\(=2x^2+3x-8x-12\)
\(=x\left(2x+3\right)-4\left(2x+3\right)\)
\(=\left(x-4\right)\left(2x+3\right)\)
d)\(8x^2+30x+7\)
\(=8x^2+2x+27x+7\)
\(=2x\left(4x+1\right)+7\left(4x+1\right)\)
\(=\left(2x+7\right)\left(4x+1\right)\)
e)\(6x^2-7x-20\)
\(=6x^2+8x-15x-20\)
\(=2x\left(3x+4\right)-5\left(3x+4\right)\)
\(=\left(2x-5\right)\left(3x+4\right)\)
a, \(3x^2-8x+4=3x^2-6x-2x+4\)
\(=3x.\left(x-2\right)-2.\left(x-2\right)=\left(x-2\right).\left(3x-2\right)\)
b, \(3x^2-16x+5=3x^2-15x-x+5\)
\(=3x.\left(x-5\right)-\left(x-5\right)=\left(x-5\right).\left(3x-1\right)\)
c, \(2x^2-5x-12=2x^2-8x+3x-12\)
\(=2x.\left(x-4\right)+3.\left(x-4\right)=\left(x-4\right).\left(2x+3\right)\)
d, \(8x^2+30x+7=8x^2+2x+28x+7\)
\(=2x.\left(4x+1\right)+7.\left(4x+1\right)=\left(4x-1\right).\left(2x+7\right)\)
e, \(6x^2-7x-20=6x^2-15x+8x-20\)
\(=3x.\left(2x-5\right)+4x.\left(2x-5\right)=\left(2x-5\right).\left(3x+4x\right)\)
Chúc bạn học tốt!!!