\(\frac{2a+b+c+d}{a}\)=\(\frac{a+2b+c+d}{b}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

còn ai nữa à ==' 
đk a,b,c,d khác 0
áp dugnj tc dãy tỉ số = nhau \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2d}{a+b+c+d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}\)
+> nếu a+b+c+d =0\(\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\end{cases}\hept{\begin{cases}d+a=-\left(b+c\right)\\\end{cases}}}\)\(\Rightarrow M=-4\)
+> a+b+c+d khác 0 \(\Rightarrow\frac{2a+b+c+d}{a}=5\Rightarrow b+c+d=3a\)
Tương tự ta có \(\hept{\begin{cases}a+b+c=3d\\a+c+d=3b\\a+b+d=3c\end{cases}}\)\(\Rightarrow a=b=c=d\)
Khi đó M=4
Vậy M=4 hoặc M=-4

6 tháng 8 2016

cố lên 2 bác nha!!!

19 tháng 12 2016

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

TH1: Nếu a+b+c+d\(\ne\)0 thì theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2d}{a+b+c+d}\)\(=\frac{5a+5b+5c+5d}{a+b+c+d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)

<=> \(2a+b+c+d=5a;a+2b+c+d=5b;a+b+2c+d=5c;a+b+c+2d=5d\)

<=>\(b+c+d=3a;a+c+d=3b;a+b+d=3c;a+b+c=3d\)

=>\(b+c+d+a+c+d=3a+3b\Leftrightarrow a+b+2c+2d=3a+3b\)

<=>\(2c+2d=2a+2b\Leftrightarrow2\left(c+d\right)=2\left(a+b\right)\Leftrightarrow c+d=a+b\)

Chứng minh tương tự ta được b+c=d+a ; c+d=a+b ; d+a=b+c

=>\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

TH2: a+b+c+d=0

\(\Leftrightarrow a+b=-\left(c+d\right);b+c=-\left(a+b\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)

\(\Rightarrow M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy ........................

7 tháng 11 2018

Đặt dãy tỷ số bằng nhau là (1)

\(\Rightarrow\left(1\right)=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)

\(\Rightarrow\left(1\right)=\frac{2\left(a+b\right)+3\left(c+d\right)}{c+d}=\frac{2\left(a+b\right)}{c+d}+3=5\Rightarrow\frac{\left(a+b\right)}{c+d}=1\)

Chứng minh tương tự ta tính và suy ra

\(\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)

\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

14 tháng 3 2020

Từ giả thiết suy ra:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

* Nếu a + b + c + d = 0 thì a + b = - ( c + d ); b + c = - ( d + a ); c + d = - ( a + b ); d + a = - ( b + c )

Khi đó M = ( - 1 ) + ( - 1 ) + ( - 1 ) + ( - 1 ) = - 4

* Nếu a + b + c + d \(\ne0\) thì \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)nên a = b = c = d

Khi đó M = 1 + 1 + 1 + 1 = 4

20 tháng 8 2016

Câu 1:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1.\)(T/c dãy tỷ số bằng nhau)

Suy ra:

\(\frac{a}{b}=1\Rightarrow a=b\)

\(\frac{b}{c}=1\Rightarrow b=c\)

\(\frac{c}{d}=1\Rightarrow c=d\)

\(\frac{d}{a}=1\Rightarrow d=a\)

Theo t/c bắc cầu => \(a=b=c=d\)

Câu 2: Do \(a=b=c=d\) nên

\(M=\frac{a+2a}{a}+\frac{b+2b}{b}+\frac{c+2c}{c}+\frac{d+2d}{d}=3+3+3+3=12\)

20 tháng 8 2016

Ta dễ dàng thấy b= d2

a2 = c

b= ac

Từ đó thấy a = b = c = d

Từ đó ta có M = 3 + 3 +  3 + 3 = 12

29 tháng 11 2019

Các bạn giúp mình nhé ! Mình đang cần gấp

Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{b+a+d}=\frac{d}{c+b+a}\)

\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{b+a+d}+1=\frac{d}{c+b+a}+1\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{b+a+d}=\frac{a+b+c+d}{c+b+a}\)

Mà a+b+c+d khác 0

=> b+c+d = a+c+d = b+a+d = c+b+a

=> b = a = c = d

Ta có:

\(P=\frac{2a+5b}{3c+4d}-\frac{2b+5c}{3d+4a}-\frac{2c+5d}{3a+4b}-\frac{2d+5a}{3c+4b}\)

\(P=\frac{2a+5a}{3a+4a}-\frac{2b+5b}{3b+4b}-\frac{2c+5d}{3c+4c}-\frac{2d+5d}{3d+4d}\)

\(P=\frac{7a}{7a}-\frac{7b}{7b}-\frac{7c}{7c}-\frac{7d}{7d}\)

\(P=1-1-1-1=-2\)

2 tháng 6 2016

OK:

Trừ 1 ở mỗi tỉ số,ta có:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1\)\(=\frac{a+b+c+2d}{d}-1\)

=>\(\frac{2a+b+c+d-a}{a}=\frac{a+2b+c+d-b}{b}\)\(=\frac{a+b+2c+d-c}{c}=\frac{a+b+c+2d-d}{d}\)

=>\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Do đó a=b=c=d

=>\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\)\(\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)

Vậy M=4

 

1 tháng 6 2016

Mik thấy đề đúng màlolang

 

26 tháng 11 2016

Ta có: a/b=b/c=c/d=d/a áp dụng tính chất dãy tỉ số bằng nhau ta được:

a/b=b/c=c/d=d/a=(a+b+c+d)/(a+b+c+d)=1

Do đó: a/b=1 suy ra a=b (1) ; b/c=1 suy ra b=c (2) ; c/d=1 suy ra c=d (3) ; d/a=1 suy ra d=a (4)

Từ (1),(2),(3),(4) ta được: a=b=c=d

Suy ra:P=(2a-a)/(a+a)+(2a-a)/(a+a)+(2a-a)/(a+a)+(2a+a)/(a+a)

=4.a/2a=4.1/2=2

Vậy P=2

26 tháng 11 2016

thanks ban nha

8 tháng 1 2018

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{a}=\frac{a+c+b+d}{b+d+c+a}=1\)

\(\Rightarrow a=b=c=d\)

Vậy \(A=\frac{2a-b}{2a+b}+\frac{2b-c}{2b+c}+\frac{2c-d}{2c+d}+\frac{2d-a}{2d+a}=\frac{1}{3}.4=\frac{4}{3}\)

13 tháng 10 2016

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d khác 0) nên a = b = c = d

\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)

\(=\frac{1}{2}.4=2\)