\(\alpha\)=\(\dfrac{3}{5}\). Tính A= 5.sin2<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 10 2018

Lời giải:

a) \(A=5\sin ^2a+6\cos ^2a=6(\sin ^2a+\cos ^2a)-\sin ^2a\)

\(=6.1-(\frac{3}{5})^2=\frac{141}{25}\)

b)

\(\tan a=\frac{5}{12}\Leftrightarrow \frac{\sin a}{\cos a}=\frac{5}{12}\)

\(\Rightarrow \frac{\sin a}{5}=\frac{\cos a}{12}\Rightarrow \frac{\sin ^2a}{5^2}=\frac{\cos ^2a}{12^2}=\frac{\sin ^2a+\cos ^2a}{5^2+12^2}=\frac{1}{169}\)

(theo tính chất dãy tỉ số bằng nhau)

\(\Rightarrow \sin ^2a=\frac{5^2}{169}; \cos ^2a=\frac{12^2}{169}\)

Kết hợp với việc \(\sin a, \cos a\) cùng dấu (do thương của chúng dương)

\(\Rightarrow (\sin a, \cos a)=\left(\frac{5}{13}; \frac{12}{13}\right)\) hoặc \(\left(\frac{-5}{13}; \frac{-12}{13}\right)\)

a: Sửa đề: \(A=sin^2a+sin^2a\cdot tan^2a\)

\(=sin^2a\left(1+tan^2a\right)=sin^2a\cdot\dfrac{1}{cos^2a}=tan^2a\)

b: \(=\dfrac{\left(sina+cosa\right)^2}{sina+cosa}-cosa=sina+cosa-cosa=sina\)

c: \(=\dfrac{cosa+cos^2a+sina}{1+cosa}\)

14 tháng 8 2017

a)ta có cos2a = 1-sin2a => A = 4(1-sin2a) -6sin2a

A= 4 -10sin2a = 4- 10.(4/5)2 = -2,4

A = -2,4

b) B = tt

14 tháng 8 2017

ôi, nhầm sina =1/5 => A = 4-10.(1/5)2 = 4-0,4 = 3,6

A=3,6

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

1 tháng 7 2018

a)\(\sin\alpha=\dfrac{9}{15}\Rightarrow\sin^2\alpha=\dfrac{81}{225}\)

Có: \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow\cos^2\alpha=1-\sin^2\alpha=1-\dfrac{81}{225}=\dfrac{144}{225}\)

\(\Rightarrow\cos\alpha=\sqrt{\dfrac{144}{225}}=\dfrac{12}{15}=\dfrac{4}{5}\)

\(\Rightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{9}{15}:\dfrac{4}{5}=\dfrac{3}{4}\)

\(\cot\alpha=\dfrac{\cos\alpha}{\tan\alpha}=\dfrac{4}{5}:\dfrac{9}{15}=\dfrac{4}{3}\)

b)\(\cos\alpha=\dfrac{3}{5}\Rightarrow\cos^2\alpha=\dfrac{9}{25}\)

Có: \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow\sin^2\alpha=1-\cos^2\alpha=1-\dfrac{9}{25}=\dfrac{16}{25}\)

\(\Rightarrow\sin\alpha=\dfrac{4}{5}\)

\(\Rightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)

\(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\)

2 tháng 7 2018

thank

3 tháng 9 2016

a/ \(\left(1-cos\alpha\right)\left(1+cos\alpha\right)=1-cos^2\alpha=\left(sin^2\alpha+cos^2\alpha\right)-cos^2\alpha=sin^2\alpha\)

b/ \(1+sin^2\alpha+cos^2\alpha=1+1=2\)

c/ \(sin\alpha-sin\alpha.cos^2\alpha=sin\alpha\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)