K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2023

\(\dfrac{1}{7}+\dfrac{1}{91}+\dfrac{1}{247}+\dfrac{1}{475}+\dfrac{1}{775}+\dfrac{1}{1147}\)

\(=\dfrac{1}{1.7}+\dfrac{1}{7.13}+\dfrac{1}{13.19}+\dfrac{1}{19.25}+\dfrac{1}{25.31}+\dfrac{1}{31.37}\)

\(=\dfrac{1}{6}\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{37}\right)\)

\(=\dfrac{1}{6}\left(1-\dfrac{1}{37}\right)\)

\(=\dfrac{1}{6}.\dfrac{36}{37}\)

\(=\dfrac{6}{37}\)

\(#Wendy.Dang\)

15 tháng 4 2019

\(\frac{-1}{91}+\frac{-1}{247}+\frac{-1}{475}+\frac{-1}{775}+\frac{-1}{1147}\)

\(=-\left(\frac{1}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\right)\)

\(=-[\frac{1}{6}.\left(\frac{6}{7.13}+\frac{6}{13.19}+\frac{6}{19.25}+\frac{6}{25.31}+\frac{6}{31.37}\right)]\)

\(=-\text{[}\frac{1}{6}.\left(\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+\frac{1}{19}-\frac{1}{25}+\frac{1}{25}-\frac{1}{31}+\frac{1}{31}-\frac{1}{37}\right)\text{]}\)

\(=-\text{[}\frac{1}{6}.\left(\frac{1}{7}-\frac{1}{37}\right)\text{]}\)

\(=-\text{[}\frac{1}{6}.\frac{30}{259}\text{]}\)

\(=-\frac{5}{259}\)

26 tháng 9 2023

\(\dfrac{1}{7}+\dfrac{1}{91}+...+\dfrac{1}{1147}\)

\(=\dfrac{1}{1\cdot7}+\dfrac{1}{7\cdot13}+\dfrac{1}{13\cdot19}+...+\dfrac{1}{31\cdot37}\)

\(=\dfrac{1}{6}\cdot\left(\dfrac{6}{1\cdot7}+\dfrac{6}{7\cdot13}+\dfrac{6}{13\cdot19}+...+\dfrac{6}{31\cdot37}\right)\)

\(=\dfrac{1}{6}\cdot\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+...+\dfrac{1}{31}-\dfrac{1}{37}\right)\)

\(=\dfrac{1}{6}\cdot\left(1-\dfrac{1}{37}\right)\)

\(=\dfrac{1}{6}\cdot\dfrac{36}{37}\)

\(=\dfrac{6}{37}\)

Vậy ...

#\(Toru\)

24 tháng 8 2015

thế này à:

\(\frac{91-\frac{1}{11}-\frac{2}{12}-\frac{3}{13}-...-\frac{91}{101}}{\frac{1}{55}+\frac{1}{60}+....+\frac{1}{505}}\)

24 tháng 8 2015

\(\frac{91-\frac{1}{11}-\frac{2}{12}-\frac{3}{13}-...-\frac{91}{101}}{\frac{1}{55}+\frac{1}{60}+\frac{1}{65}+...+\frac{1}{505}}\)

Xét tử:

\(91-\frac{1}{11}-\frac{2}{12}-\frac{3}{13}-...-\frac{91}{101}\)

\(\left(1+1+1+...+1\right)-\left(\frac{1}{11}+\frac{2}{12}+\frac{3}{13}+...+\frac{91}{101}\right)\)

\(\left(1-\frac{1}{11}\right)+\left(1-\frac{2}{12}\right)+....+\left(1-\frac{91}{101}\right)\)

\(\frac{10}{11}+\frac{10}{12}+...+\frac{10}{101}\)

\(10.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{101}\right)\)

\(10.5.\left(\frac{1}{55}+\frac{1}{60}+...+\frac{1}{505}\right)\)

\(50.\left(\frac{1}{55}+\frac{1}{60}+...+\frac{1}{505}\right)\)

Thay vào ta được phân số:

\(\frac{50.\left(\frac{1}{55}+\frac{1}{60}+...+\frac{1}{505}\right)}{\frac{1}{55}+\frac{1}{60}+...+\frac{1}{505}}\)

= 50